Question #200279

The engine mechanism shown in Fig. 8.38 has crank OB = 50 mm and length of connecting rod A B = 225 mm. The centre of gravity of the rod is at G which is 75 mm from B. The engine speed is 200r.p.m. For the position shown, in which OB is turned 45° from O A, Find 1. the velocity of G and the angular velocity of A B, and 2. the acceleration of G and angular acceleration of A B.


1
Expert's answer
2021-06-07T05:43:03-0400

BG=75 mm

NB=200rpm    ωBO=2πND60=2π20060=20.94rad/sN_B=200 rpm \implies \omega_{BO}=\frac{2 \pi N_D}{60}=\frac{2 \pi*200}{60}=20.94 rad/s

VBO=ωBOBO=20.940.05=1.0472m/sV_{BO}=\omega _{BO}*BO=20.94*0.05=1.0472 m/s

The velocity of link BO (crank) on velocity diagram will be BO=vBO50=1.047250=52.36mmBO=v_{BO}*50=1.0472*50=52.36 mm

bgba=BGBA    bg=7522537.5=12.5mm\frac{bg}{ba}=\frac{BG}{BA} \implies bg=\frac{75}{225}*37.5=12.5 mm

This can be drawn on the diagram considering the following values.

oa=42.92;ba=37.5;Voa=oa50=42.9250=0.858m/soa =42.92; ba=37.5; V_{oa}=\frac{oa}{50}=\frac{42.92}{50}=0.858 m/s

vg=46.1450=0.923m/s;VBA=37.550=0.75m/sv_g=\frac{46.14}{50}=0.923m/s; V_{BA}=\frac{37.5}{50}=0.75 m/s

Radial accelertion of the components

OB=arob=1.047220.05=21.93m/s2;AB=arab=0.7520.22=2.5m/s2OB =a^rob=\frac{1.0472^2}{0.05}=21.93 m/s^2 ; AB =a^rab=\frac{0.75^2}{0.22}=2.5 m/s^2

bgba=BGBA    bg=7522577.35=25.784mm\frac{b'g'}{b'a'}=\frac{BG}{BA} \implies b'g'= \frac{75}{225}*77.35=25.784 mm

For acceleration diagram

og=93.31mmo'g' =93.31 mm then ag=93.315=18.662m/s2ag=\frac{93.31}{5}=18.662 m/s^2

Angular accleartion of AB

aABt=76.335=15.266m/s2a^t_{AB}=\frac{76.33}{5}=15.266 m/s ^2

αAB=15.2660.255=67.85rad/s\alpha_{AB}=\frac{15.266}{0.255}=67.85 rad/s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS