Question #176291

A thin rim with a mean diameter of 1.2 m and cross section of 15 mm ×200mm rotates at 800 r/min. Calculate change in diameter due to rotation if E=200GPa and density is 7800kg/m^3


1
Expert's answer
2021-04-01T01:14:42-0400

Radius, r =D2=1.22=0.6m=\frac{D}{2}=\frac{1.2}{2}=0.6 m

Area, A=15×2000=3000mm2=30001000000=0.003m2= 15 \times 2000=3000 mm^2= \frac{3000}{1000000}=0.003 m^2

ω=2πN60=2×π×80060=83.775rad/s\omega= \frac{2 \pi N}{60}=\frac{2 \times \pi \times800}{60}=83.775 rad/s

Velocity ,v=rω=0.6×83.775=50.2655m/s,v=r\omega=0.6 \times 83.775 =50.2655 m/s

Magnitude of force, F=mv=ρAv2=7800×0.003×(50.2655)2=59122.919N\rho A v^2=7800 \times 0.003 \times (50.2655)^2=59122.919 N

Stress, σ=FA=59122.9190.003=19.708MPa\sigma =\frac{F}{A}=\frac{59122.919}{0.003}=19.708 MPa

Change in diameter , d=FdAE=59122.919×1.20.003×200×109=0.000118245=0.118245mm\triangle d=\frac{Fd}{AE}=\frac{59122.919 \times1.2}{0.003 \times 200 \times 10^9}=0.000118245=0.118245 mm


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS