Question #123764
An aluminium bar 600mm long, with diameter 40mm, has a hole drilled in the center of the bar. The hole is 30mm in diameter and is 100mm long. If the modulus of elasticity for the aluminium is 85GN/m2, calculate the total contraction on the bar due to a compressive load of 180kN.
1
Expert's answer
2020-06-29T08:29:09-0400

Given:

For aluminum bar

compressive Load (P)=180KN

modulus of elasticity (EAL)=85GN/m2

Total Length(L) = 600 mm

Diameter aluminium bar (do) = 40 mm

Hole diameter (di)= 30 mm

Rest bar lenght (L1)=(600-100)=500 mm

Hole length (L2)= 100 mm

Find the total contraction on the bar due to a compressive load .

now, free body Diagram



Now,

Areaofcrosssectionwithouthole(A1)=π4×di2=π4×402=1256.63mm2Area\,of\,crosssection\,without\,hole\,(A_{1})=\frac{\pi }{4}\times d_{i}^{2}=\frac{\pi }{4}\times 40^{2}=1256.63\,mm^{^{2}}


Areaofcrosssectionwithhole(A2)=π4×(do2di2)Area\,of\,crosssection\,with\,hole\,(A_{2})=\frac{\pi }{4}\times (d_{o}^{2}-d_{i}^{2})\\


\therefore A2=π4×(402302)=549.77mm2A_{2}=\frac{\pi }{4}\times (40^{2}-30^{2})=549.77\,mm^{^{2}}


Now,


Totalcontraction=P×L1A1×E+P×L2A2×E=pE×(L1A1+L2A2)Total\,contraction\,=\frac{P\times L_{1}}{A_{1}\times E}+\frac{P\times L_{2}}{A_{2}\times E}=\frac{p}{E}\times (\frac{L_{1}}{A_{1}}+\frac{L_{2}}{A_{2}})


So,

Totalcontraction=180×103N85×103N/m2×(5001256.63+100549.77)=1.228mmTotal\,contraction\,=\frac{180\times 10^{3}N}{85\times 10^{3}N/m^{2}}\times \left ( \frac{500}{1256.63} +\frac{100}{549.77}\right )=1.228mm


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS