(1) The total work done
"W_t=W_{ad}+W_{ib}"
"W_{ad}=\\frac{1}{\\gamma-1}(p_1V_1-p_2V_2)"
"V_2=V_1(\\frac{p_1}{p_2})^{1\/\\gamma}, \\gamma=\\frac{C_p}{C_V}=\\frac{c_p\\cdot\\mu}{c_V\\cdot\\mu}=\\frac{1.005}{0.714}=1.41"
"V_2=V_1(\\frac{p_1}{p_2})^{1\/\\gamma}=0.15\\cdot(\\frac{3.8}{1.0})^{1\/1.41}=0.39m^3"
"W_{ad}=\\frac{1}{\\gamma-1}(p_1V_1-p_2V_2)=\\frac{1}{1.41-1}(380000\\cdot 0.15-100000\\cdot 0.39)="
"=43902J"
"W_{ib}=p\\Delta V"
"\\Delta H=U_2+pV_2-U_1-pV_1=\\frac{m}{\\mu}C_VT_2-\\frac{m}{\\mu}C_VT_1+p\\Delta V="
"=\\frac{m}{\\mu}C_V\\frac{pV_2}{\\frac{m}{\\mu}R}-\\frac{m}{\\mu}C_V\\frac{pV_2}{\\frac{m}{\\mu}R}+W_{ib}="
"=\\frac{C_V}{R}(p(V_2-V_1))+W_{ib}=\\frac{C_V}{R}W_{ib}+W_{ib}=W_{ib}(1+\\frac{C_V}{R})"
"W_{ib}=\\frac{\\Delta H}{1+\\frac{C_V}{R}}=\\frac{70000}{1+\\frac{714\\cdot0.02896}{8.31}}=20067J"
"W_t=43902+20067\\approx64000J=64kJ"
(2)
Comments
How did you get 0.02896?
Wib is an isobaric
What is Wib stand here I can't understand
Leave a comment