Question #223618

In an unbalanced, three-phase, star-delta system has a frequency of 50 Hz, and CBA phase rotation.The phase impedances

of the load are as follows:

 

 Zab =29.41∠ 54.69°Ω ;      Zbc=25.61∠-38.66° Ω ;    Zca =17.8 ∠ 51.84° Ω


The emf of the source is represented by:ec(t)=221.831 𝐬𝐢𝐧 (𝛚𝐭 +(𝟓𝝅/𝟏𝟖) ) V



Calculate the phase current,( Iab, Ibc & Ica) of the load in polar form.

Calculate the active powerPab, Pbc , Pca) in phase AB of the load in phasor form.

Determine the line current,( Ia, Ib & Ic) in polar form.

If two wattmeters are connected in lines a and b respectively of the above circuit to

measure the active power

Determine the reading of the wattmeter,(Wa) connected in line a.

Determine the reading of the wattmeter,(Wb) connected in line b.



1
Expert's answer
2021-08-06T04:30:49-0400

eC(t)=221.831sin(wt+5π18)VeB(t)=eC(t)2400eB(t)=221.831sin(wt+5π182π3)eB(t)=221.831sin(wt7π18)eA(t)=eC(t)2400eA(t)=221.831sin(wt+5π18+2π3)eA(t)=221.831sin(wt+7π18)Iab=EAEBZABEA=221.8312(1718π)=156.861700EB=221.8312(718π)=156.86700Zab=29.4154.690ΩIab=156.861700156.8670029.4154.690Iab=9.23885.310e_C(t) =221.831 sin (wt+ \frac{5 \pi}{18})V\\ e_B(t)=e_C(t) \angle-240^0\\ e_B(t)=221.831 sin (wt+ \frac{5 \pi}{18}-\frac{2 \pi}{3})\\ e_B(t)=221.831 sin (wt- \frac{7 \pi}{18})\\ e_A(t)=e_C(t) \angle-240^0\\ e_A(t)=221.831 sin (wt+ \frac{5 \pi}{18}+\frac{2 \pi}{3})\\ e_A(t)=221.831 sin (wt+\frac{7 \pi}{18})\\ I_{ab}=\frac{E_A-E_B}{Z_{AB}}\\ E_A=\frac{221.831}{\sqrt{2}}\angle(\frac{17}{18}\pi)= 156.86 \angle 170^0\\ E_B=\frac{221.831}{\sqrt{2}}\angle(-\frac{7}{18}\pi)= 156.86 \angle -70^0\\ Z_{ab}=29.41\angle54.69^0 \Omega\\ I_{ab}=\frac{156.86 \angle 170^0-156.86 \angle -70^0}{29.41\angle54.69^0}\\ I_{ab}=9.238\angle85.31^0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS