Question #221891

Assume a rectangular waveguide with dimensions a=2 cm and b=1cm. The 

waveguide is filled with air and the operating frequency is 50MHz. Find the 

propagation constant, guide wavelength and cut off frequency for TE10, 

TM11 and TE20 modes


1
Expert's answer
2021-08-03T04:07:01-0400

a)Propagation constant is given by the formula below

γ=(mπa)2+(nπb)2ω2μϵ\gamma=\sqrt{({\dfrac{m\pi}{a}})^2+({\dfrac{n\pi}{b}})^2-\omega^2\mu\epsilon}

a=0.02m,b=0.01m

For TE10 mode, m=1,n=0

f=50MHz

γ=(1π0.02)2+(0π0.01)2(2π×50×106)2(3×108)2γ=157.1\gamma=\sqrt{({\dfrac{1\pi}{0.02}})^2+({\dfrac{0\pi}{0.01}})^2-\dfrac{(2\pi\times{50\times{10^6}})^2}{(3\times{10^8})^2}}\\ \gamma=157.1 For TM11 mode

m=1,n=1

γ=(1π0.02)2+(1π0.01)2(2π×50×106)2(3×108)2γ=351.2\gamma=\sqrt{({\dfrac{1\pi}{0.02}})^2+({\dfrac{1\pi}{0.01}})^2-\dfrac{(2\pi\times{50\times{10^6}})^2}{(3\times{10^8})^2}}\\ \gamma=351.2 For TE20, m=2, n=0

γ=(2π0.02)2+(0π0.01)2(2π×50×106)2(3×108)2γ=314.2\gamma=\sqrt{({\dfrac{2\pi}{0.02}})^2+({\dfrac{0\pi}{0.01}})^2-\dfrac{(2\pi\times{50\times{10^6}})^2}{(3\times{10^8})^2}}\\ \gamma=314.2 The guide wavelength cannot be calculated without cutoff frequency.

fc=u2(ma)2+(nb)2f_c=\dfrac{u'}{2}\sqrt{(\dfrac{m}{a})^2+(\dfrac{n}{b})^2}

For TE10 mode,m=1,n=0

fc=3×1082(10.02)2+(00.01)2=7.5GHzf_c=\dfrac{3\times{10^8}}{2}\sqrt{(\dfrac{1}{0.02})^2+(\dfrac{0}{0.01})^2}=7.5GHzfor TM11 mode,m=n=1

fc=3×1082(10.02)2+(10.01)2=16.8GHzf_c=\dfrac{3\times{10^8}}{2}\sqrt{(\dfrac{1}{0.02})^2+(\dfrac{1}{0.01})^2}=16.8GHz for TE20 mode, m=2, n=0

fc=3×1082(20.02)2+(00.01)2=15MHzf_c=\dfrac{3\times{10^8}}{2}\sqrt{(\dfrac{2}{0.02})^2+(\dfrac{0}{0.01})^2}=15MHz guide wave is given by

λg=cf2fc2\lambda_g=\dfrac{c}{\sqrt{f^2-f_c^2}}

Guide wavelength exist for only TE20 mode

λg=3×108(50×106)2(15×106)2=6.29m\lambda_g=\dfrac{3\times10^8}{\sqrt{(50\times{10^6})^2-(15\times{10^6})^2}}=6.29m



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS