a)Propagation constant is given by the formula below
γ = ( m π a ) 2 + ( n π b ) 2 − ω 2 μ ϵ \gamma=\sqrt{({\dfrac{m\pi}{a}})^2+({\dfrac{n\pi}{b}})^2-\omega^2\mu\epsilon} γ = ( a mπ ) 2 + ( b nπ ) 2 − ω 2 μ ϵ
a=0.02m,b=0.01m
For TE10 mode, m=1,n=0
f=50MHz
γ = ( 1 π 0.02 ) 2 + ( 0 π 0.01 ) 2 − ( 2 π × 50 × 1 0 6 ) 2 ( 3 × 1 0 8 ) 2 γ = 157.1 \gamma=\sqrt{({\dfrac{1\pi}{0.02}})^2+({\dfrac{0\pi}{0.01}})^2-\dfrac{(2\pi\times{50\times{10^6}})^2}{(3\times{10^8})^2}}\\
\gamma=157.1 γ = ( 0.02 1 π ) 2 + ( 0.01 0 π ) 2 − ( 3 × 1 0 8 ) 2 ( 2 π × 50 × 1 0 6 ) 2 γ = 157.1 For TM11 mode
m=1,n=1
γ = ( 1 π 0.02 ) 2 + ( 1 π 0.01 ) 2 − ( 2 π × 50 × 1 0 6 ) 2 ( 3 × 1 0 8 ) 2 γ = 351.2 \gamma=\sqrt{({\dfrac{1\pi}{0.02}})^2+({\dfrac{1\pi}{0.01}})^2-\dfrac{(2\pi\times{50\times{10^6}})^2}{(3\times{10^8})^2}}\\
\gamma=351.2 γ = ( 0.02 1 π ) 2 + ( 0.01 1 π ) 2 − ( 3 × 1 0 8 ) 2 ( 2 π × 50 × 1 0 6 ) 2 γ = 351.2 For TE20, m=2, n=0
γ = ( 2 π 0.02 ) 2 + ( 0 π 0.01 ) 2 − ( 2 π × 50 × 1 0 6 ) 2 ( 3 × 1 0 8 ) 2 γ = 314.2 \gamma=\sqrt{({\dfrac{2\pi}{0.02}})^2+({\dfrac{0\pi}{0.01}})^2-\dfrac{(2\pi\times{50\times{10^6}})^2}{(3\times{10^8})^2}}\\
\gamma=314.2 γ = ( 0.02 2 π ) 2 + ( 0.01 0 π ) 2 − ( 3 × 1 0 8 ) 2 ( 2 π × 50 × 1 0 6 ) 2 γ = 314.2 The guide wavelength cannot be calculated without cutoff frequency.
f c = u ′ 2 ( m a ) 2 + ( n b ) 2 f_c=\dfrac{u'}{2}\sqrt{(\dfrac{m}{a})^2+(\dfrac{n}{b})^2} f c = 2 u ′ ( a m ) 2 + ( b n ) 2
For TE10 mode,m=1,n=0
f c = 3 × 1 0 8 2 ( 1 0.02 ) 2 + ( 0 0.01 ) 2 = 7.5 G H z f_c=\dfrac{3\times{10^8}}{2}\sqrt{(\dfrac{1}{0.02})^2+(\dfrac{0}{0.01})^2}=7.5GHz f c = 2 3 × 1 0 8 ( 0.02 1 ) 2 + ( 0.01 0 ) 2 = 7.5 G Hz for TM11 mode,m=n=1
f c = 3 × 1 0 8 2 ( 1 0.02 ) 2 + ( 1 0.01 ) 2 = 16.8 G H z f_c=\dfrac{3\times{10^8}}{2}\sqrt{(\dfrac{1}{0.02})^2+(\dfrac{1}{0.01})^2}=16.8GHz f c = 2 3 × 1 0 8 ( 0.02 1 ) 2 + ( 0.01 1 ) 2 = 16.8 G Hz for TE20 mode, m=2, n=0
f c = 3 × 1 0 8 2 ( 2 0.02 ) 2 + ( 0 0.01 ) 2 = 15 M H z f_c=\dfrac{3\times{10^8}}{2}\sqrt{(\dfrac{2}{0.02})^2+(\dfrac{0}{0.01})^2}=15MHz f c = 2 3 × 1 0 8 ( 0.02 2 ) 2 + ( 0.01 0 ) 2 = 15 M Hz guide wave is given by
λ g = c f 2 − f c 2 \lambda_g=\dfrac{c}{\sqrt{f^2-f_c^2}} λ g = f 2 − f c 2 c
Guide wavelength exist for only TE20 mode
λ g = 3 × 1 0 8 ( 50 × 1 0 6 ) 2 − ( 15 × 1 0 6 ) 2 = 6.29 m \lambda_g=\dfrac{3\times10^8}{\sqrt{(50\times{10^6})^2-(15\times{10^6})^2}}=6.29m λ g = ( 50 × 1 0 6 ) 2 − ( 15 × 1 0 6 ) 2 3 × 1 0 8 = 6.29 m
Comments