Question #221320

Identify the following conic and hence reduce it in its standard form:

5x2-24xy-5y2+4x+58y-59=0


1
Expert's answer
2021-07-30T04:05:01-0400

5x224xy5y2+4x+58y59=05x^2-24xy-5y^2+4x+58y-59=0

Compare with

ax2+bxy+cy2+dx+ey+f=0a=5;b=24;c=5;d=4;e=58;f=59Nowb24ac(24)245(5)=676b24ac>0Hence  a hyperbolaThe equation isx2a2y2b2=1x252y2(24)2=1x225y2576=1ax^2+bxy+cy^2+dx+ey+f=0\\ a=5; b = -24; c=-5; d=4; e= 58; f=-59\\ Now \\ b^2-4ac\\ (-24)^2-4*5*(-5)= 676\\ b^2-4ac > 0 \\ Hence \space \space a \space hyperbola \\ The \space equation \space is \\ \frac{x^2}{a^2}-\frac{y^2}{b^2}=1\\ \frac{x^2}{5^2}-\frac{y^2}{(-24)^2}=1\\ \frac{x^2}{25}-\frac{y^2}{576}=1\\



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS