We have given the differential equation,
(2x−3y−1)dx+(x−3y−5)dy=0 
dxdy+(x−3y−5)(2x−3y−1)=0 
Putting x=X+h  and y=Y+k 
→2h−3k−1=0and h−3k−5=0 
Hence, dXdY+(X+3Y)(2X−3Y)=0 
Putting Y=vX 
v+XdXdv+1−3v2−3v=0 
XdXdv=(1−3v)(3v−2)−v 
             =(1−3v)(2v−2−3v2) 
∫(2v−2−3v21−3v)dv+∫XdX=logC 
21log(2v−2−3v2)+logX=logc 
Hence, this is the final solution of the given differential equation.
Comments