A. Solve the following problems. Write your answer on a sheet of paper.
1. Given that sin α = and sin β = , find 𝑡𝑎𝑛 (α + β) if both α and β are in QIV.
2. Given that csc A = , A in QI, and sec B = , sin B < 0, find
a. cos (A – B)
b. tan (A – B)
3. If tan (x + y) = and tan y = , what is tan x?
4. The point (9, –5) lies on the terminal side of the angle 𝜃 in standard position. Find (sin 𝜃 + cos 𝜃).
B. Solve the following problems. Write your answer on a sheet of paper.
1. If cos t = , what is cos 2t?
2. Use half – angle identities to find the exact value of tan 22.50 and sin 150.
1.
"\\sin\\beta=b, -1\\leq a\\leq0"
"\\cos \\alpha=\\sqrt{1-\\sin^2 \\alpha}=\\sqrt{1-a^2}"
"\\cos\\beta =\\sqrt{1-\\sin^2 \\beta}=\\sqrt{1-b^2}"
"=\\dfrac{\\dfrac{a}{\\sqrt{1-a^2}}+\\dfrac{b}{\\sqrt{1-b^2}}}{1-\\dfrac{a}{\\sqrt{1-a^2}}\\dfrac{b}{\\sqrt{1-b^2}}}"
"=\\dfrac{a\\sqrt{1-b^2}+b\\sqrt{1-a^2}}{\\sqrt{1-a^2}\\sqrt{1-b^2}-ab}"
"\\tan(\\alpha+\\beta)=\\dfrac{a\\sqrt{1-b^2}+b\\sqrt{1-a^2}}{\\sqrt{1-a^2}\\sqrt{1-b^2}-ab}"
2.
"\\cos A=\\sqrt{1-\\sin^2 A}=\\sqrt{1-(\\dfrac{1}{a})^2}=\\dfrac{\\sqrt{a^2-1}}{a}"
"\\sec B=\\dfrac{1}{\\cos B}=b, |b|\\geq 1"
"\\cos B=\\dfrac{1}{b}"
"\\sin B=-\\sqrt{1-\\cos^2 B}=-\\sqrt{1-(\\dfrac{1}{b})^2}=-\\dfrac{\\sqrt{b^2-1}}{|b|}"
a.
"=\\dfrac{\\sqrt{a^2-1}}{a}(\\dfrac{1}{b})+\\dfrac{1}{a}(-\\dfrac{\\sqrt{b^2-1}}{|b|})"
"b\\geq1, a\\geq1:\\cos(A-B)=\\dfrac{\\sqrt{a^2-1}-\\sqrt{b^2-1}}{ab}"
b.
"\\sin(A-B)=\\sin A\\cos B-\\cos A\\sin B"
"=\\dfrac{1}{a}(\\dfrac{1}{b})-\\dfrac{\\sqrt{a^2-1}}{a}(-\\dfrac{\\sqrt{b^2-1}}{|b|})"
"b\\geq1, a\\geq1:\\cos(A-B)=\\dfrac{\\sqrt{a^2-1}-\\sqrt{b^2-1}}{ab}"
"\\tan(A-B)=\\dfrac{1+\\sqrt{(a^2-1)(b^2-1)}}{\\sqrt{a^2-1}-\\sqrt{b^2-1}}"
"\\tan(A-B)=\\dfrac{1-\\sqrt{(a^2-1)(b^2-1)}}{\\sqrt{a^2-1}+\\sqrt{b^2-1}}"
3.
"\\tan (x+y)-\\tan x \\tan (x+y)\\tan y=\\tan x+\\tan y"
"\\tan x=\\dfrac{\\tan (x+y)-\\tan y}{1+\\tan (x+y) \\tan y}"
Given "\\tan(x+y)=a, \\tan y=b"
4.
"\\sin \\theta=\\dfrac{-5}{\\sqrt{106}}, \\cos\\theta=\\dfrac{9}{\\sqrt{106}}"
"\\sin \\theta+\\cos \\theta =-\\dfrac{5}{\\sqrt{106}}+\\dfrac{9}{\\sqrt{106}}=\\dfrac{4}{\\sqrt{106}}"
"\\sin \\theta+\\cos \\theta =\\dfrac{4}{\\sqrt{106}}"
B.
1.
Given "\\cos t=a"
2.
"\\sin 15\\degree=\\dfrac{\\sqrt{2-\\sqrt{3}}}{2}"
"\\tan 22.5\\degree=\\sqrt{\\dfrac{1-\\cos 45\\degree}{1+\\cos45\\degree}}=\\sqrt{\\dfrac{1-\\dfrac{\\sqrt{2}}{2}}{1+\\dfrac{\\sqrt{2}}{2}}}"
"=\\sqrt{\\dfrac{2-\\sqrt{2}}{2+\\sqrt{2}}}=\\dfrac{2-\\sqrt{2}}{\\sqrt{2}}=\\sqrt{2}-1"
Comments
Leave a comment