Answer to Question #167794 in Civil and Environmental Engineering for eyel

Question #167794

A.     Solve the following problems. Write your answer on a sheet of paper.


1.      Given that sin α =  and sin β = , find 𝑡𝑎𝑛 (α + β) if both α and β are in QIV.

2.      Given that csc A = , A in QI, and sec B = , sin B < 0, find

a.      cos (A – B)

b.     tan (A – B)

3.      If tan (x + y) =  and tan y = , what is tan x?

4.      The point (9, –5) lies on the terminal side of the angle 𝜃 in standard position. Find (sin 𝜃 + cos 𝜃).


B.      Solve the following problems. Write your answer on a sheet of paper.


1.      If cos t = , what is cos 2t?

2.      Use half – angle identities to find the exact value of tan 22.50 and sin 150.


1
Expert's answer
2021-03-08T03:08:16-0500

1.


sinα=a,1a0\sin \alpha=a, -1\leq a\leq0

sinβ=b,1a0\sin\beta=b, -1\leq a\leq0

cosα=1sin2α=1a2\cos \alpha=\sqrt{1-\sin^2 \alpha}=\sqrt{1-a^2}

cosβ=1sin2β=1b2\cos\beta =\sqrt{1-\sin^2 \beta}=\sqrt{1-b^2}


tan(α+β)=tanα+tanβ1tanαtanβ\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}

=a1a2+b1b21a1a2b1b2=\dfrac{\dfrac{a}{\sqrt{1-a^2}}+\dfrac{b}{\sqrt{1-b^2}}}{1-\dfrac{a}{\sqrt{1-a^2}}\dfrac{b}{\sqrt{1-b^2}}}

=a1b2+b1a21a21b2ab=\dfrac{a\sqrt{1-b^2}+b\sqrt{1-a^2}}{\sqrt{1-a^2}\sqrt{1-b^2}-ab}

tan(α+β)=a1b2+b1a21a21b2ab\tan(\alpha+\beta)=\dfrac{a\sqrt{1-b^2}+b\sqrt{1-a^2}}{\sqrt{1-a^2}\sqrt{1-b^2}-ab}

2.


cscA=1sinA=a,a1\csc A=\dfrac{1}{\sin A}=a, a\geq 1


sinA=1a,\sin A=\dfrac{1}{a},

cosA=1sin2A=1(1a)2=a21a\cos A=\sqrt{1-\sin^2 A}=\sqrt{1-(\dfrac{1}{a})^2}=\dfrac{\sqrt{a^2-1}}{a}

secB=1cosB=b,b1\sec B=\dfrac{1}{\cos B}=b, |b|\geq 1

cosB=1b\cos B=\dfrac{1}{b}

sinB=1cos2B=1(1b)2=b21b\sin B=-\sqrt{1-\cos^2 B}=-\sqrt{1-(\dfrac{1}{b})^2}=-\dfrac{\sqrt{b^2-1}}{|b|}

a.


cos(AB)=cosAcosB+sinAsinB\cos(A-B)=\cos A\cos B+\sin A\sin B

=a21a(1b)+1a(b21b)=\dfrac{\sqrt{a^2-1}}{a}(\dfrac{1}{b})+\dfrac{1}{a}(-\dfrac{\sqrt{b^2-1}}{|b|})

b1,a1:cos(AB)=a21b21abb\geq1, a\geq1:\cos(A-B)=\dfrac{\sqrt{a^2-1}-\sqrt{b^2-1}}{ab}


b1,a1:cos(AB)=a21+b21abb\leq-1, a\geq1:\cos(A-B)=\dfrac{\sqrt{a^2-1}+\sqrt{b^2-1}}{ab}

b.


tan(AB)=sin(AB)cos(aB)\tan(A-B)=\dfrac{\sin(A-B)}{\cos(a-B)}

sin(AB)=sinAcosBcosAsinB\sin(A-B)=\sin A\cos B-\cos A\sin B

=1a(1b)a21a(b21b)=\dfrac{1}{a}(\dfrac{1}{b})-\dfrac{\sqrt{a^2-1}}{a}(-\dfrac{\sqrt{b^2-1}}{|b|})

b1,a1:cos(AB)=a21b21abb\geq1, a\geq1:\cos(A-B)=\dfrac{\sqrt{a^2-1}-\sqrt{b^2-1}}{ab}


sin(AB)=1+(a21)(b21)ab\sin(A-B)=\dfrac{1+\sqrt{(a^2-1)(b^2-1)}}{ab}

tan(AB)=1+(a21)(b21)a21b21\tan(A-B)=\dfrac{1+\sqrt{(a^2-1)(b^2-1)}}{\sqrt{a^2-1}-\sqrt{b^2-1}}


b1,a1:cos(AB)=a21+b21abb\leq-1, a\geq1:\cos(A-B)=\dfrac{\sqrt{a^2-1}+\sqrt{b^2-1}}{ab}


sin(AB)=1(a21)(b21)ab\sin(A-B)=\dfrac{1-\sqrt{(a^2-1)(b^2-1)}}{ab}

tan(AB)=1(a21)(b21)a21+b21\tan(A-B)=\dfrac{1-\sqrt{(a^2-1)(b^2-1)}}{\sqrt{a^2-1}+\sqrt{b^2-1}}

3.


tan(x+y)=tanx+tany1tanxtany\tan(x+y)=\dfrac{\tan x+\tan y}{1-\tan x \tan y}

tan(x+y)tanxtan(x+y)tany=tanx+tany\tan (x+y)-\tan x \tan (x+y)\tan y=\tan x+\tan y

tanx=tan(x+y)tany1+tan(x+y)tany\tan x=\dfrac{\tan (x+y)-\tan y}{1+\tan (x+y) \tan y}

Given tan(x+y)=a,tany=b\tan(x+y)=a, \tan y=b


tanx=ab1+ab\tan x=\dfrac{a-b}{1+ab}

4.


(9)2+(5)2=106\sqrt{(9)^2+(-5)^2}=\sqrt{106}

sinθ=5106,cosθ=9106\sin \theta=\dfrac{-5}{\sqrt{106}}, \cos\theta=\dfrac{9}{\sqrt{106}}

sinθ+cosθ=5106+9106=4106\sin \theta+\cos \theta =-\dfrac{5}{\sqrt{106}}+\dfrac{9}{\sqrt{106}}=\dfrac{4}{\sqrt{106}}

sinθ+cosθ=4106\sin \theta+\cos \theta =\dfrac{4}{\sqrt{106}}

B.

1.     


cos2t=2cos2t1\cos2t=2\cos^2t-1

Given cost=a\cos t=a


cos2t=2a21\cos2t=2a^2-1

2.


sin15°=1cos30°2=1322\sin 15\degree=\sqrt{\dfrac{1-\cos 30\degree}{2}}=\sqrt{\dfrac{1-\dfrac{\sqrt{3}}{2}}{2}}

sin15°=232\sin 15\degree=\dfrac{\sqrt{2-\sqrt{3}}}{2}

tan22.5°=1cos45°1+cos45°=1221+22\tan 22.5\degree=\sqrt{\dfrac{1-\cos 45\degree}{1+\cos45\degree}}=\sqrt{\dfrac{1-\dfrac{\sqrt{2}}{2}}{1+\dfrac{\sqrt{2}}{2}}}

=222+2=222=21=\sqrt{\dfrac{2-\sqrt{2}}{2+\sqrt{2}}}=\dfrac{2-\sqrt{2}}{\sqrt{2}}=\sqrt{2}-1


tan22.5°=21\tan 22.5\degree=\sqrt{2}-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment