Question #167792

1.      Given that csc A = , A in QI, and sec B = , sin B < 0, find

a.      cos (A – B)

b.     tan (A – B)


1
Expert's answer
2021-03-04T06:02:57-0500
cscA=1sinA=a,a1\csc A=\dfrac{1}{\sin A}=a, a\geq 1


sinA=1a,\sin A=\dfrac{1}{a},

cosA=1sin2A=1(1a)2=a21a\cos A=\sqrt{1-\sin^2 A}=\sqrt{1-(\dfrac{1}{a})^2}=\dfrac{\sqrt{a^2-1}}{a}

secB=1cosB=b,b1\sec B=\dfrac{1}{\cos B}=b, |b|\geq 1

cosB=1b\cos B=\dfrac{1}{b}

sinB=1cos2B=1(1b)2=b21b\sin B=-\sqrt{1-\cos^2 B}=-\sqrt{1-(\dfrac{1}{b})^2}=-\dfrac{\sqrt{b^2-1}}{|b|}

a.


cos(AB)=cosAcosB+sinAsinB\cos(A-B)=\cos A\cos B+\sin A\sin B

=a21a(1b)+1a(b21b)=\dfrac{\sqrt{a^2-1}}{a}(\dfrac{1}{b})+\dfrac{1}{a}(-\dfrac{\sqrt{b^2-1}}{|b|})

b1,a1:cos(AB)=a21b21abb\geq1, a\geq1:\cos(A-B)=\dfrac{\sqrt{a^2-1}-\sqrt{b^2-1}}{ab}


b1,a1:cos(AB)=a21+b21abb\leq-1, a\geq1:\cos(A-B)=\dfrac{\sqrt{a^2-1}+\sqrt{b^2-1}}{ab}

b.


tan(AB)=sin(AB)cos(aB)\tan(A-B)=\dfrac{\sin(A-B)}{\cos(a-B)}

sin(AB)=sinAcosBcosAsinB\sin(A-B)=\sin A\cos B-\cos A\sin B

=1a(1b)a21a(b21b)=\dfrac{1}{a}(\dfrac{1}{b})-\dfrac{\sqrt{a^2-1}}{a}(-\dfrac{\sqrt{b^2-1}}{|b|})

b1,a1:cos(AB)=a21b21abb\geq1, a\geq1:\cos(A-B)=\dfrac{\sqrt{a^2-1}-\sqrt{b^2-1}}{ab}


sin(AB)=1+(a21)(b21)ab\sin(A-B)=\dfrac{1+\sqrt{(a^2-1)(b^2-1)}}{ab}

tan(AB)=1+(a21)(b21)a21b21\tan(A-B)=\dfrac{1+\sqrt{(a^2-1)(b^2-1)}}{\sqrt{a^2-1}-\sqrt{b^2-1}}


b1,a1:cos(AB)=a21+b21abb\leq-1, a\geq1:\cos(A-B)=\dfrac{\sqrt{a^2-1}+\sqrt{b^2-1}}{ab}


sin(AB)=1(a21)(b21)ab\sin(A-B)=\dfrac{1-\sqrt{(a^2-1)(b^2-1)}}{ab}

tan(AB)=1(a21)(b21)a21+b21\tan(A-B)=\dfrac{1-\sqrt{(a^2-1)(b^2-1)}}{\sqrt{a^2-1}+\sqrt{b^2-1}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS