Question #167790

1.      Given that sin α =  and sin β = , find 𝑡𝑎𝑛 (α + β) if both α and β are in QIV.


1
Expert's answer
2021-03-04T06:02:51-0500


sinα=a,1a0\sin \alpha=a, -1\leq a\leq0

sinβ=b,1a0\sin\beta=b, -1\leq a\leq0

cosα=1sin2α=1a2\cos \alpha=\sqrt{1-\sin^2 \alpha}=\sqrt{1-a^2}

cosβ=1sin2β=1b2\cos\beta =\sqrt{1-\sin^2 \beta}=\sqrt{1-b^2}


tan(α+β)=tanα+tanβ1tanαtanβ\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}

=a1a2+b1b21a1a2b1b2=\dfrac{\dfrac{a}{\sqrt{1-a^2}}+\dfrac{b}{\sqrt{1-b^2}}}{1-\dfrac{a}{\sqrt{1-a^2}}\dfrac{b}{\sqrt{1-b^2}}}

=a1b2+b1a21a21b2ab=\dfrac{a\sqrt{1-b^2}+b\sqrt{1-a^2}}{\sqrt{1-a^2}\sqrt{1-b^2}-ab}

tan(α+β)=a1b2+b1a21a21b2ab\tan(\alpha+\beta)=\dfrac{a\sqrt{1-b^2}+b\sqrt{1-a^2}}{\sqrt{1-a^2}\sqrt{1-b^2}-ab}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS