x+y−2+(2x−3y+1)dxdy=0
x+y−2+(2x−3y+1)y′=0
x+y−2+(2x−3y+1)y′−(x+y)=0−(x+y)
−2+(2x−3y+1)y′=−(x+y)
−2+(2x−3y+1)y′+2=−(x+y)+2
(2x−3y+1)y′=−x−y+2
2x−3y+1(2x−3y+1)y′=−2x−3y+1x−2x−3y+1y+2x−3y+12
y′=2x−3y+1−x−y+2
(−3v+1−x+2−2xv−v)′=2x−3⋅−3v+1−x+2−2xv−v+1−x−−3v+1−x+2−2xv−v+2
(−3v+1−x+2−2xv−v)′=v
(−3v+1−x+2−2xv−v)′
=(−3v+1)2(−x+2−2xv−v)′(−3v+1)−(−3v+1)′(−x+2−2xv−v)
(−3v+1)2−5xv′+5v′+6v2+v−1=v
9v3−12v2+11v′=−5x+51
−51ln(3v−1)+52(41ln(36v2−36v−12)+4211(ln∣∣73(2v−1)+1∣∣−ln∣∣73(2v−1)−1∣∣))=−51ln(−5x+5)+C1
Comments
Leave a comment