Answer to Question #169194 in Civil and Environmental Engineering for mae

Question #169194

Solve the homogenous equation of differential equation (x+y-2)dx+(2x-3y+1)dy=0


1
Expert's answer
2021-03-11T06:55:38-0500

x+y2+(2x3y+1)dydx=0x+y-2+\left(2x-3y+1\right)\frac{dy}{dx}=0

x+y2+(2x3y+1)y=0x+y-2+\left(2x-3y+1\right)y'\:=0

x+y2+(2x3y+1)y(x+y)=0(x+y)x+y-2+\left(2x-3y+1\right)y'\:-\left(x+y\right)=0-\left(x+y\right)

2+(2x3y+1)y=(x+y)-2+\left(2x-3y+1\right)y'\:=-\left(x+y\right)

2+(2x3y+1)y+2=(x+y)+2-2+\left(2x-3y+1\right)y'\:+2=-\left(x+y\right)+2

(2x3y+1)y=xy+2\left(2x-3y+1\right)y'\:=-x-y+2

(2x3y+1)y2x3y+1=x2x3y+1y2x3y+1+22x3y+1\frac{\left(2x-3y+1\right)y'\:}{2x-3y+1}=-\frac{x}{2x-3y+1}-\frac{y}{2x-3y+1}+\frac{2}{2x-3y+1}

y=xy+22x3y+1y'\:=\frac{-x-y+2}{2x-3y+1}

(x+22xvv3v+1)=xx+22xvv3v+1+22x3x+22xvv3v+1+1\left(\frac{-x+2-2xv-v}{-3v+1}\right)'\:=\frac{-x-\frac{-x+2-2xv-v}{-3v+1}+2}{2x-3\cdot \frac{-x+2-2xv-v}{-3v+1}+1}

(x+22xvv3v+1)=v\left(\frac{-x+2-2xv-v}{-3v+1}\right)'\:=v

(x+22xvv3v+1)\left(\frac{-x+2-2xv-v}{-3v+1}\right)'\:

=(x+22xvv)(3v+1)(3v+1)(x+22xvv)(3v+1)2=\frac{\left(-x+2-2xv-v\right)'\left(-3v+1\right)-\left(-3v+1\right)'\left(-x+2-2xv-v\right)}{\left(-3v+1\right)^2}

5xv+5v+6v2+v1(3v+1)2=v\frac{-5xv'\:+5v'\:+6v^2+v-1}{\left(-3v+1\right)^2}=v

19v312v2+1v=15x+5\frac{1}{9v^3-12v^2+1}v'\:=\frac{1}{-5x+5}

15ln(3v1)+25(14ln(36v236v12)+1421(ln3(2v1)7+1ln3(2v1)71))=15ln(5x+5)+C1-\frac{1}{5}\ln \left(3v-1\right)+\frac{2}{5}\left(\frac{1}{4}\ln \left(36v^2-36v-12\right)+\frac{1}{4\sqrt{21}}\left(\ln \left|\frac{\sqrt{3}\left(2v-1\right)}{\sqrt{7}}+1\right|-\ln \left|\frac{\sqrt{3}\left(2v-1\right)}{\sqrt{7}}-1\right|\right)\right)=-\frac{1}{5}\ln(-5x+5)+C_1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment