Solution of (D³ - 2D² - 3D)y = 0
A) y = C1.₁e^{x} + C₂е^{-x }+ С3.e^{3x} B) y = C1e^x + C₂е^{-x} + С3.e^{-3x}
C) y = C1+C₂е^{-x} + С3.e^{3x}
D) y = C₁+C₂е^{-x} + С3e^{-3x}
"\\left(D^3-2D^2-3D\\right)y=0\\\\\n\\mathrm{A\\:linear\\:homogeneous\\:ODE\\:with\\:constant\\:coefficients\\:has\\:the\\:form\\:of}\\:\\left(a_nD^n+...+a_1D+a_0\\right)y=0\\\\\nD=0,\\:D=-1,\\:D=3\\\\\n\\mathrm{For\\:non\\:repeated\\:real\\:roots\\:}D_1,\\:D_2,\\:...,\\:D_n\\mathrm{,\\:the\\:general\\:solution\\:takes\\:the\\:form:}\\\\\ny=c_1e^{D_1\\:x}+c_2e^{D_2\\:x}+...+c_ne^{D_n\\:x}\\\\\nc_1e^0+c_2e^{-x}+c_3e^{3x}\\\\\ny=c_1+c_2e^{-x}+c_3e^{3x}"
Comments
Leave a comment