If Ø(x, y, z) = x² - y²-2²-2, then ∇Ø at (2,1,-1) is
A) 4i +2j-2k
B)4i-2j-2k
C) 4i + 2j + 2k
D)4i - 2j +2k
"\u00d8(x, y, z) = x\u00b2 - y\u00b2-z\u00b2-2\\\\\nThen \\space \u2207\u00d8= \\frac{\\partial}{\\partial x}i, \\frac{\\partial}{\\partial x}j, \\frac{\\partial}{\\partial x}k\\\\\n\u2207\u00d8= \\frac{\\partial}{\\partial x} (x\u00b2 - y\u00b2-z\u00b2-2), \\frac{\\partial}{\\partial x}(x\u00b2 - y\u00b2-z\u00b2-2), \\frac{\\partial}{\\partial x}(x\u00b2 - y\u00b2-z\u00b2-2)\\\\\n\u2207\u00d8=2x i, 2yj,2zk\\\\\n At (2,1,-1) \\\\\n\u2207\u00d8=4 i+ 2j-2k"
Option A is correct.
Comments
Leave a comment