By definition, curl(x2z2,2y2z2,xy2z)=∇×(x2z2,2y2z2,xy2z) or, equivalently,
∇×(x2z2,2y2z2,xy2z)=∣∣i∂x∂x2z2j∂y∂2y2z2k∂z∂xy2z∣∣
curl(x2z2,2y2z2,xy2z)=(∂y∂(xy2z)−∂z∂(2y2z2),∂z∂(x2z2)−∂x∂(xy2z),∂x∂(2y2z2)−∂y∂(x2z2))
Now, just plug in the found partial derivatives to get the curl:
curl(x2z2,2y2z2,xy2z)=(2yz(x−2y),z(2x2−y2),0).
Finally, find the curl at the specific point.
(curl(x2z2,2y2z2,xy2z))∣((x0,y0,z0)=(3,2,1))=(−4,14,0)
The answer should be -4i + 14j
Comments