Question #223892

Solve y" + 3y' +2y =1, y(0)=0,y'(0) = 1


1
Expert's answer
2021-09-03T07:20:42-0400

Asecondorderlinear,nonhomogeneousODEhastheformofay+by+cy=g(x)Thegeneralsolutiontoa(x)y+b(x)y+c(x)y=g(x)canbewrittenasy=yh+ypyhisthesolutiontothehomogeneousODEa(x)y+b(x)y+c(x)y=0yp,theparticularsolution,isanyfunctionthatsatisfiesthenonhomogeneousequationy=c1et+c2e2tThegeneralsolutiony=yh+ypis:y=1212e2t\mathrm{A\:second\:order\:linear,\:non-homogeneous\:ODE\:has\:the\:form\:of\:}\:\:ay''+by'+cy=g\left(x\right)\\ \mathrm{The\:general\:solution\:to\:}a\left(x\right)y''+b\left(x\right)y'+c\left(x\right)y=g\left(x\right)\mathrm{\:can\:be\:written\:as}\\ y=y_h+y_p\\ y_h\mathrm{\:is\:the\:solution\:to\:the\:homogeneous\:ODE\:}a\left(x\right)y''+b\left(x\right)y'+c\left(x\right)y=0\\ y_p\mathrm{,\:the\:particular\:solution,\:is\:any\:function\:that\:satisfies\:the\:non-homogeneous\:equation}\\ y=c_1e^{-t}+c_2e^{-2t}\\ \mathrm{The\:general\:solution\:}y=y_h+y_p\mathrm{\:is:}\\ y=\frac{1}{2}-\frac{1}{2}e^{-2t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS