Find the inverse Laplace transform of In s+3/s^2+9?
L−1{s+3s2+9}s+3s2+9=ss2+9+3s2+9=L−1{ss2+9+3s2+9}Use the linearity property of Inverse Laplace Transform:For functions f(s), g(s) and constants a, b:L−1{a⋅f(s)+b⋅g(s)}=a⋅L−1{f(s)}+b⋅L−1{g(s)}=L−1{ss2+9}+3L−1{1s2+9}=cos(3t)+3⋅13sin(3t)=cos(3t)+sin(3t)L^{-1}\left\{\frac{s+3}{s^2+9}\right\}\\ \frac{s+3}{s^2+9}=\frac{s}{s^2+9}+\frac{3}{s^2+9}\\ =L^{-1}\left\{\frac{s}{s^2+9}+\frac{3}{s^2+9}\right\}\\ \mathrm{Use\:the\:linearity\:property\:of\:Inverse\:Laplace\:Transform:}\\ \mathrm{For\:functions\:}f\left(s\right),\:g\left(s\right)\mathrm{\:and\:constants\:}a,\:b:\quad L^{-1}\left\{a\cdot f\left(s\right)+b\cdot g\left(s\right)\right\}=a\cdot L^{-1}\left\{f\left(s\right)\right\}+b\cdot L^{-1}\left\{g\left(s\right)\right\}\\ =L^{-1}\left\{\frac{s}{s^2+9}\right\}+3L^{-1}\left\{\frac{1}{s^2+9}\right\}=\cos \left(3t\right)+3\cdot \\\frac{1}{3}\sin \left(3t\right)\\ =\cos \left(3t\right)+\sin \left(3t\right)L−1{s2+9s+3}s2+9s+3=s2+9s+s2+93=L−1{s2+9s+s2+93}UsethelinearitypropertyofInverseLaplaceTransform:Forfunctionsf(s),g(s)andconstantsa,b:L−1{a⋅f(s)+b⋅g(s)}=a⋅L−1{f(s)}+b⋅L−1{g(s)}=L−1{s2+9s}+3L−1{s2+91}=cos(3t)+3⋅31sin(3t)=cos(3t)+sin(3t)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment