Evaluate the line integral of ∀ =xyl+ y^{2}zj+e^{2z}k over the curve C whoseparametric representation is given by x=t^{2},y=2t,z=t,0<t<1
{V}=xyi+y2zj+e2zkx=t2,y=2t,z=t,0<t<1\{V\}=xyi+ y^{2}zj+e^{2z}k\\ x=t^{2},y=2t,z=t,0<t<1{V}=xyi+y2zj+e2zkx=t2,y=2t,z=t,0<t<1
Now the line integral is ∫CVdr\int_CVdr∫CVdr
{V(t)}=t2(2t)i+(2t)2tj+e2tk=2t3i+4t3j+e2tkdr=(2t,2,1){V(t)}∗dr=(2t3i+4t3j+e2tk)(2t,2,1)=(4t4+8t3+e2t)∫CVdr=∫01(4t4+8t3+e2t)dtApply the Sum Rule:∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx=∫014t4dt+∫018t3dt+∫01e2tdt=145+e2−12\{V(t)\}=t^2(2t)i+ (2t)^{2}tj+e^{2t}k\\ =2t^3i+ 4t^{3}j+e^{2t}k\\ dr= (2t,2,1)\\ \{V(t)\}*dr=(2t^3i+ 4t^{3}j+e^{2t}k)(2t,2,1)=(4t^4+8t^3+e^{2t})\\ \int_CVdr= \int_0^1(4t^4+8t^3+e^{2t})dt\\ \mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx\\ =\int _0^14t^4dt+\int _0^18t^3dt+\int _0^1e^{2t}dt\\ =\frac{14}{5}+\frac{e^2-1}{2}{V(t)}=t2(2t)i+(2t)2tj+e2tk=2t3i+4t3j+e2tkdr=(2t,2,1){V(t)}∗dr=(2t3i+4t3j+e2tk)(2t,2,1)=(4t4+8t3+e2t)∫CVdr=∫01(4t4+8t3+e2t)dtApplytheSumRule:∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx=∫014t4dt+∫018t3dt+∫01e2tdt=514+2e2−1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment