Question #223878

Evaluate ∬R(x-y)^{2}sin^{2}(x+y)d xdy, where R is the rhombus withsuccessive vertices at (π,0),(2π,π),(π,2t) and (0,π)


1
Expert's answer
2021-08-30T01:55:06-0400

R(xy)2sin2(x+y)dxdyR((xy)sin(x+y))2dxdyG(u,v)=(u+v2,uv2)x=u+v2,y=uv2dxdy=J(u,v)dudvJ(u,v)=xuxvyuyv=12121212=12R((xy)sin(x+y))2dxdy=02π02π(vsinu)J(u,v)dudv=02π02πv2sin2u(12)dudv=1202πdv02πsin2udu=12(2π)02π(1cos2u2)du=12(2π)[12usin2uu]02π=12(2π)(12(2π))=π2∬_R(x-y)^{2}sin^{2}(x+y)d xdy\\ ∬_R((x-y)sin(x+y))^2d xdy\\ G(u,v)= (\frac{u+v}{2}, \frac{u-v}{2})\\ x= \frac{u+v}{2}, y= \frac{u-v}{2}\\ dxdy= |J(u,v)|dudv\\ J(u,v)=\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = \frac{1}{2}\\ ∬_R((x-y)sin(x+y))^2d xdy= \int_0^{2 \pi}\int_0^{2 \pi}(v-\sin u) J(u,v)d udv\\ = \int_0^{2 \pi}\int_0^{2 \pi}v^2\sin^2 u (\frac{1}{2})d udv\\ = \frac{1}{2}\int_0^{2 \pi}dv\int_0^{2 \pi}\sin^2 udu\\ = \frac{1}{2}(2 \pi)\int_0^{2 \pi}(\frac{1-\cos 2 u}{2})du\\ = \frac{1}{2}(2 \pi)[\frac{1}{2}u -\frac{\sin 2 u}{u}]_0^{2 \pi}\\ = \frac{1}{2}(2\pi)( \frac{1}{2} (2 \pi))\\ =\pi^2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS