∬ R ( x − y ) 2 s i n 2 ( x + y ) d x d y ∬ R ( ( x − y ) s i n ( x + y ) ) 2 d x d y G ( u , v ) = ( u + v 2 , u − v 2 ) x = u + v 2 , y = u − v 2 d x d y = ∣ J ( u , v ) ∣ d u d v J ( u , v ) = ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ = ∣ 1 2 1 2 1 2 − 1 2 ∣ = 1 2 ∬ R ( ( x − y ) s i n ( x + y ) ) 2 d x d y = ∫ 0 2 π ∫ 0 2 π ( v − sin u ) J ( u , v ) d u d v = ∫ 0 2 π ∫ 0 2 π v 2 sin 2 u ( 1 2 ) d u d v = 1 2 ∫ 0 2 π d v ∫ 0 2 π sin 2 u d u = 1 2 ( 2 π ) ∫ 0 2 π ( 1 − cos 2 u 2 ) d u = 1 2 ( 2 π ) [ 1 2 u − sin 2 u u ] 0 2 π = 1 2 ( 2 π ) ( 1 2 ( 2 π ) ) = π 2 ∬_R(x-y)^{2}sin^{2}(x+y)d xdy\\
∬_R((x-y)sin(x+y))^2d xdy\\
G(u,v)= (\frac{u+v}{2}, \frac{u-v}{2})\\
x= \frac{u+v}{2}, y= \frac{u-v}{2}\\
dxdy= |J(u,v)|dudv\\
J(u,v)=\begin{vmatrix}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{vmatrix} = \begin{vmatrix}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{vmatrix} = \frac{1}{2}\\
∬_R((x-y)sin(x+y))^2d xdy= \int_0^{2 \pi}\int_0^{2 \pi}(v-\sin u) J(u,v)d udv\\
= \int_0^{2 \pi}\int_0^{2 \pi}v^2\sin^2 u (\frac{1}{2})d udv\\
= \frac{1}{2}\int_0^{2 \pi}dv\int_0^{2 \pi}\sin^2 udu\\
= \frac{1}{2}(2 \pi)\int_0^{2 \pi}(\frac{1-\cos 2 u}{2})du\\
= \frac{1}{2}(2 \pi)[\frac{1}{2}u -\frac{\sin 2 u}{u}]_0^{2 \pi}\\
= \frac{1}{2}(2\pi)( \frac{1}{2} (2 \pi))\\
=\pi^2 ∬ R ( x − y ) 2 s i n 2 ( x + y ) d x d y ∬ R (( x − y ) s in ( x + y ) ) 2 d x d y G ( u , v ) = ( 2 u + v , 2 u − v ) x = 2 u + v , y = 2 u − v d x d y = ∣ J ( u , v ) ∣ d u d v J ( u , v ) = ∣ ∣ ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ∣ ∣ = ∣ ∣ 2 1 2 1 2 1 − 2 1 ∣ ∣ = 2 1 ∬ R (( x − y ) s in ( x + y ) ) 2 d x d y = ∫ 0 2 π ∫ 0 2 π ( v − sin u ) J ( u , v ) d u d v = ∫ 0 2 π ∫ 0 2 π v 2 sin 2 u ( 2 1 ) d u d v = 2 1 ∫ 0 2 π d v ∫ 0 2 π sin 2 u d u = 2 1 ( 2 π ) ∫ 0 2 π ( 2 1 − c o s 2 u ) d u = 2 1 ( 2 π ) [ 2 1 u − u s i n 2 u ] 0 2 π = 2 1 ( 2 π ) ( 2 1 ( 2 π )) = π 2
Comments