b) Find the complete integral of the PDE px + qy +z = xq^2?
dp/(2p+2p) = dy/-2y
dp/p + 2*dy/y =0
py^2=a
Put the value of y = a/y^2 in (1)
q = - z/y - ax/y^3 + a^2 / (2y^4)
Now, complete solution can be found by the following equation
dz = pdx + qdy
dz = (a/y^2) dx - (z/y) dy - (ax/y^3)dy + (a^2/(2y^4)) dy
ydz + zdy = a((ydx - xdy) /y^2) + (a^2 / (2y^3)) dy
yz - ax/y +(a^2) /(4y^2) = b
z = ax/y^2 - a^2 / (4y^3) + b/y
Comments
Leave a comment