Question #223832

The radius of convergence of the Taylor series expansion of the function f(z)=4z^{2}+3z/(z-1)^{2}(z+4)(z-3) abou z=-1 is


1
Expert's answer
2021-08-18T08:54:01-0400

We know that Taylor series expansion of function at Zo is

f(z)=f(z0)+(zz0)f(z0)+(zz0)22!f(z0)+(zz0)33!f(z0)+...f(z)= f(z_0)+(z-z_0)f'(z_0)+\frac{(z-z_0)^2}{2!}f''(z_0)+\frac{(z-z_0)^3}{3!}f'''(z_0)+...

f(z)=4z2+3z(z1)2(z+4)(z3)f=ddz(4z2+3z(z1)2(z+4)(z3))=ddz(4z2+3z)(z1)2(z+4)(z3)ddz((z1)2(z+4)(z3))(4z2+3z)((z1)2(z+4)(z3))2=8z4+13z3+7z2132z36(z1)3(z+4)2(z3)2[z=1]f=4(1)2+3(1)(11)2(1+4)(13)f=148f(z)=\frac{4z^2+3z}{\left(z-1\right)^2\left(z+4\right)\left(z-3\right)}\\ f'=\frac{d}{dz}\left(\frac{4z^2+3z}{\left(z-1\right)^2\left(z+4\right)\left(z-3\right)}\right)\\ =\frac{\frac{d}{dz}\left(4z^2+3z\right)\left(z-1\right)^2\left(z+4\right)\left(z-3\right)-\frac{d}{dz}\left(\left(z-1\right)^2\left(z+4\right)\left(z-3\right)\right)\left(4z^2+3z\right)}{\left(\left(z-1\right)^2\left(z+4\right)\left(z-3\right)\right)^2}\\ =-\frac{8z^4+13z^3+7z^2-132z-36}{\left(z-1\right)^3\left(z+4\right)^2\left(z-3\right)^2}\\ \begin{bmatrix}z=-1\end{bmatrix}\\ f=\frac{4\left(-1\right)^2+3\left(-1\right)}{\left(-1-1\right)^2\left(-1+4\right)\left(-1-3\right)}\\ f=-\frac{1}{48}\\

f=[f=8z4+13z3+7z2132z36(z1)3(z+4)2(z3)2z=1]f=(32z3+39z2+14z132)(z1)3(z+4)2(z3)2(3(z1)2(z+4)2(z3)2+(4z3+6z246z24)(z1)3)(8z4+13z3+7z2132z36)(z1)6(z+4)4(z3)4f=253456f''=\begin{bmatrix}f=-\frac{8z^4+13z^3+7z^2-132z-36}{\left(z-1\right)^3\left(z+4\right)^2\left(z-3\right)^2}\\ z=-1\end{bmatrix}\\ f''= \frac{\left(32z^3+39z^2+14z-132\right)\left(z-1\right)^3\left(z+4\right)^2\left(z-3\right)^2-\left(3\left(z-1\right)^2\left(z+4\right)^2\left(z-3\right)^2+\left(4z^3+6z^2-46z-24\right)\left(z-1\right)^3\right)\left(8z^4+13z^3+7z^2-132z-36\right)}{\left(z-1\right)^6\left(z+4\right)^4\left(z-3\right)^4}\\ f''=-\frac{25}{3456}


f(z)=148+(z+1)(148)+(z+1)212!4253456+...f(z)= -\frac{1}{\sqrt{48}}+(z+1)(-\frac{1}{{48}})+(z+1)^2* \frac{1}{2!}*\frac{4*25}{3456}+...


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS