Question #223826

L^{-1} 1/s^{2}+4s+4 }


1
Expert's answer
2021-08-16T02:19:27-0400

L1{1s2+4s+4}1s2+4s+4=1(s+2)2=L1{1(s+2)2}Applyinversetransformrule:ifL1{F(s)}=f(t)thenL1{F(sa)}=eatf(t)For1(s+2)2:a=2,F(s)=1s2=e2tL1{1s2}=e2ttL^{-1}\left\{\frac{1}{s^2+4s+4}\right\}\\ \frac{1}{s^2+4s+4}=\frac{1}{\left(s+2\right)^2}\\ =L^{-1}\left\{\frac{1}{\left(s+2\right)^2}\right\}\\ \mathrm{Apply\:inverse\:transform\:rule:\quad if\:}L^{-1}\left\{F\left(s\right)\right\}=f\left(t\right)\mathrm{\:then}\:L^{-1}\left\{F\left(s-a\right)\right\}=e^{at}f\left(t\right)\\ \mathrm{For\:}\frac{1}{\left(s+2\right)^2}:\quad a=-2,\:\quad F\left(s\right)=\frac{1}{s^2}\\ =e^{-2t}L^{-1}\left\{\frac{1}{s^2}\right\}\\ =e^{-2t}t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS