Answer to Question #223826 in Chemical Engineering for Lokika

Question #223826

L^{-1} 1/s^{2}+4s+4 }


1
Expert's answer
2021-08-16T02:19:27-0400

"L^{-1}\\left\\{\\frac{1}{s^2+4s+4}\\right\\}\\\\\n\\frac{1}{s^2+4s+4}=\\frac{1}{\\left(s+2\\right)^2}\\\\\n=L^{-1}\\left\\{\\frac{1}{\\left(s+2\\right)^2}\\right\\}\\\\\n\\mathrm{Apply\\:inverse\\:transform\\:rule:\\quad if\\:}L^{-1}\\left\\{F\\left(s\\right)\\right\\}=f\\left(t\\right)\\mathrm{\\:then}\\:L^{-1}\\left\\{F\\left(s-a\\right)\\right\\}=e^{at}f\\left(t\\right)\\\\\n\\mathrm{For\\:}\\frac{1}{\\left(s+2\\right)^2}:\\quad a=-2,\\:\\quad F\\left(s\\right)=\\frac{1}{s^2}\\\\\n=e^{-2t}L^{-1}\\left\\{\\frac{1}{s^2}\\right\\}\\\\\n=e^{-2t}t"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS