L^{-1} 1/s^{2}+4s+4 }
"L^{-1}\\left\\{\\frac{1}{s^2+4s+4}\\right\\}\\\\\n\\frac{1}{s^2+4s+4}=\\frac{1}{\\left(s+2\\right)^2}\\\\\n=L^{-1}\\left\\{\\frac{1}{\\left(s+2\\right)^2}\\right\\}\\\\\n\\mathrm{Apply\\:inverse\\:transform\\:rule:\\quad if\\:}L^{-1}\\left\\{F\\left(s\\right)\\right\\}=f\\left(t\\right)\\mathrm{\\:then}\\:L^{-1}\\left\\{F\\left(s-a\\right)\\right\\}=e^{at}f\\left(t\\right)\\\\\n\\mathrm{For\\:}\\frac{1}{\\left(s+2\\right)^2}:\\quad a=-2,\\:\\quad F\\left(s\\right)=\\frac{1}{s^2}\\\\\n=e^{-2t}L^{-1}\\left\\{\\frac{1}{s^2}\\right\\}\\\\\n=e^{-2t}t"
Comments
Leave a comment