L^{-1} 1/s^{2}+4s+4 }
L−1{1s2+4s+4}1s2+4s+4=1(s+2)2=L−1{1(s+2)2}Apply inverse transform rule:if L−1{F(s)}=f(t) then L−1{F(s−a)}=eatf(t)For 1(s+2)2:a=−2, F(s)=1s2=e−2tL−1{1s2}=e−2ttL^{-1}\left\{\frac{1}{s^2+4s+4}\right\}\\ \frac{1}{s^2+4s+4}=\frac{1}{\left(s+2\right)^2}\\ =L^{-1}\left\{\frac{1}{\left(s+2\right)^2}\right\}\\ \mathrm{Apply\:inverse\:transform\:rule:\quad if\:}L^{-1}\left\{F\left(s\right)\right\}=f\left(t\right)\mathrm{\:then}\:L^{-1}\left\{F\left(s-a\right)\right\}=e^{at}f\left(t\right)\\ \mathrm{For\:}\frac{1}{\left(s+2\right)^2}:\quad a=-2,\:\quad F\left(s\right)=\frac{1}{s^2}\\ =e^{-2t}L^{-1}\left\{\frac{1}{s^2}\right\}\\ =e^{-2t}tL−1{s2+4s+41}s2+4s+41=(s+2)21=L−1{(s+2)21}Applyinversetransformrule:ifL−1{F(s)}=f(t)thenL−1{F(s−a)}=eatf(t)For(s+2)21:a=−2,F(s)=s21=e−2tL−1{s21}=e−2tt
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments