Question #223824

If F(s)=s^{2}+2/s(2s^{2}-7s+5) ther limt→0f(t)


1
Expert's answer
2021-08-16T02:32:44-0400

L1{2s(2s27s+5)}=L1{25s23(s1)+815(2s5)}25s23(s1)+815(2s5)=L1{25s23(s1)+815(2s5)}UsethelinearitypropertyofInverseLaplaceTransform:Forfunctionsf(s),g(s)andconstantsa,b:L1{af(s)+bg(s)}=aL1{f(s)}+bL1{g(s)}=L1{25s}L1{23(s1)}+L1{815(2s5)}=25H(t)=23et=415e5t2=25H(t)23et+415e5t2L^{-1}\left\{\frac{2}{s\left(2s^2-7s+5\right)}\right\}\\ =L^{-1}\left\{\frac{2}{5s}-\frac{2}{3\left(s-1\right)}+\frac{8}{15\left(2s-5\right)}\right\}\\ \frac{2}{5s}-\frac{2}{3\left(s-1\right)}+\frac{8}{15\left(2s-5\right)}\\ =L^{-1}\left\{\frac{2}{5s}-\frac{2}{3\left(s-1\right)}+\frac{8}{15\left(2s-5\right)}\right\}\\ \mathrm{Use\:the\:linearity\:property\:of\:Inverse\:Laplace\:Transform:}\\ \mathrm{For\:functions\:}f\left(s\right),\:g\left(s\right)\mathrm{\:and\:constants\:}a,\:b:\quad L^{-1}\left\{a\cdot f\left(s\right)+b\cdot g\left(s\right)\right\}=a\cdot L^{-1}\left\{f\left(s\right)\right\}+b\cdot L^{-1}\left\{g\left(s\right)\right\}\\ =L^{-1}\left\{\frac{2}{5s}\right\}-L^{-1}\left\{\frac{2}{3\left(s-1\right)}\right\}+L^{-1}\left\{\frac{8}{15\left(2s-5\right)}\right\}\\ =\frac{2}{5}\text{H}\left(t\right)\\ =\frac{2}{3}e^t\\ =\frac{4}{15}e^{\frac{5t}{2}}\\ \therefore =\frac{2}{5}\text{H}\left(t\right)-\frac{2}{3}e^t+\frac{4}{15}e^{\frac{5t}{2}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS