limz→0 z^{2}-sinz/z
limz→ 0(z2−sin(z)z)limx→a[f(x)±g(x)]=limx→af(x)±limx→ag(x)With the exception of indeterminate form=limz→ 0(z2)−limz→ 0(sin(z)z)=0−1=−1\lim _{z\to \:0}\left(z^2-\frac{\sin \left(z\right)}{z}\right)\\ \lim _{x\to a}\left[f\left(x\right)\pm g\left(x\right)\right]=\lim _{x\to a}f\left(x\right)\pm \lim _{x\to a}g\left(x\right)\\ With\:the\:exception\:of\:indeterminate\:form\\ =\lim _{z\to \:0}\left(z^2\right)-\lim _{z\to \:0}\left(\frac{\sin \left(z\right)}{z}\right)\\ =0-1\\ =-1limz→0(z2−zsin(z))limx→a[f(x)±g(x)]=limx→af(x)±limx→ag(x)Withtheexceptionofindeterminateform=limz→0(z2)−limz→0(zsin(z))=0−1=−1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments