∫0^{π}cos3t 𝛿(t-2π) dt
"\\int _0^{\\pi }\\cos \\left(3t\\right)\\left(t-2\\pi \\right)dt\\\\\n=\\int _0^{\\pi }t\\cos \\left(3t\\right)-2\\pi \\cos \\left(3t\\right)dt\\\\\n=t\\cos \\left(3t\\right)-2\\pi \\cos \\left(3t\\right)\\\\\n\\mathrm{Apply\\:the\\:Sum\\:Rule}:\\quad \\int f\\left(x\\right)\\pm g\\left(x\\right)dx=\\int f\\left(x\\right)dx\\pm \\int g\\left(x\\right)dx\\\\\n=\\int _0^{\\pi }t\\cos \\left(3t\\right)dt-\\int _0^{\\pi }2\\pi \\cos \\left(3t\\right)dt\\\\\n=-\\frac{2}{9}-0\\\\\n=-\\frac{2}{9}"
Comments
Leave a comment