xdy/dx+ (x+1) y = x³
"x \\dfrac{dy}{dx} + (x + 1)y = x^3 \\\\\n\n\\dfrac{dy}{dx} + (1 + \\dfrac{1}{x})y = x^2 \\, . . . (1) \\\\\n\n\\text{the integrating factor, I.F is}\\\\\n\ne^{\\int{(1 + \\frac{1}{x}) dx}}\\\\\n\n= e^{x + \\ln x} \\\\ \n\n= xe^x\\\\ \n\n\\text{multiply eq(1) through by} \\, xe^x. \\text{We have,} \\\\\n\nxe^x \\dfrac{dy}{dx} + xe^x(1 + \\dfrac{1}{x})y = x^3 e^x\\\\\n\n\\dfrac{d}{dx}(xe^xy) = x^3 e^x\\\\\n\nIntegrating,\\\\\n\nyx e^x = \\int x^3 e^x + C . . . (2) \\\\\n\n\\text{By IBP, we have}\\\\\n\nyx e^x = x^3 e^x - \\int 3x^2 e^x dx \\\\\n\n= x^3 e^x - 3 \\int x^2 e^x \\\\\n\n= x^3 e^x - 3 [x^2 e^x - \\int 2x e^x dx] \\\\\n\n= x^3 e^x - 3x^2 e^x + 6 \\int x e^x dx \\\\\n\n= x^3 e^x - 3x^2 e^x + 6[x e^x - \\int e^x dx] \\\\\n\n= x^3 e^x - 3x^2 e^x + 6xe^x - 6e^x \\\\ \n\n= e^x(x^3 - 3x^2 + 6x - 6) \\\\\n\n\\text{Thus, from eq(2). We have,} \\\\\n\nyxe^x = e^x(x^3 - 3x^2 + 6x - 6) + C \\\\\n\ny = \\dfrac{e^x(x^3 - 3x^2 + 6x - 6)}{xe^x} + \\dfrac{C}{x}e^{-x} \\\\\n\nHence,\\\\\n\ny(x) = \\dfrac{C}{x}e^{-x} + x^2 - 3x + 6 - \\dfrac{6}{x}"
Comments
Leave a comment