Find the integrating factor to transform the given differential equation into the equation in exact differentials: (3x2y+y3)dx-(2x3+5y)dy=0, μ=μ(y)
"\\dfrac{M_y-N_x}{-M}=\\dfrac{3x^2+3y^2+6x^2}{-3x^2y-y^3}=-\\dfrac{3}{y^2}"
Integrating factor
"\\mu=\\mu(y)=e^{\\int(-3\/y^2)dy}=\\dfrac{1}{y^3}""\\dfrac{3x^2+y^2}{y^2}dx+\\dfrac{-2x^3-5y}{y^3}dy=0"
"\\dfrac{\\partial M}{\\partial y}=\\dfrac{2yy^2-2y(3x^2+y^2)}{y^4}=-\\dfrac{6x^2}{y^3}"
"N(x,y)=\\dfrac{-2x^3-5y}{y^3}"
"\\dfrac{\\partial N}{\\partial x}=-\\dfrac{6x^2}{y^3}"
"\\dfrac{\\partial M}{\\partial y}=-\\dfrac{6x^2}{y^3}=\\dfrac{\\partial N}{\\partial x}"
Integrating factor "\\mu=\\mu(y)=\\dfrac{1}{y^3}."
Comments
Leave a comment