(3x+3y-1)dx+(x+y+1)dy=0 solve the separable equation using linear substitution
"Solution: Given ~~\n\\\\(3x+3y-1)dx+(x+y+1)dy=0\\\\Now,Substitute~\\\\ u=x+y~ \\implies du=dx+dy ~\\\\y=u-x~\\implies dy=du-dx\n\\\\Put~ in~ given ~ordinary ~~differential~ ~equation\n\\\\(3(u-x)+3x-1)dx+(u+1)(du-dx)=0 \\\\\\implies (3u-3x+3x-1)dx+udu-udx-du-dx=0\n\\\\Simplifying,we~ get\n\\\\(u+1)du=(2-2u)dx\n\\\\Divide ~by ~2-2u\n\\\\\\frac{(-u-1)}{2(u-1)}du=dx\n\\\\Which ~is~ separable~ differential~ equation~form~ M(x)du=N(x)dx\n\\\\ \\therefore Integrating~both~sides~\n\\\\\\int \\frac{(-u-1)}{2(u-1)}du=\\int dx\n\\\\\\therefore \\frac{-u}{2}-ln ~(u-1)=x+c\n\\\\back ~substitution~u=x+y\n\\\\-ln (x+y-1)-\\frac{x+y}{2}=x+c\n\\\\Simplify, ~we ~get\n\\\\-ln (x+y-1)-\\frac{y}{2}=frac{3x}{2}+c,x=1-y"
Comments
Leave a comment