xdy/dx + (x+1) y = x³
"x\\frac{dy}{dx}+(x+1)y=x^3"
"\\frac{dy}{dx}+\\frac{(x+1)}{x}y=x^2"
This is a linear differential equation of the first order
"I.F=e^{\\int \\frac{x+1}{x}}dx=e^{\\int \\frac{1}{x}+1dx}=e^{ln\\ x+x}"
Solution to the equation;
"y\\cdot (I.F)=\\int x^2(I.F)dx+C"
"ye^{ln\\ x+x}=\\int x^2(e^{ln\\ x+x})dx+C"
"y\\cdot e^{ln\\ x+x}=\\int x^2\\cdot e^{ln\\ x}\\cdot e^{x}dx+C=\\int x^3\\cdot e^{x}dx+C"
"y\\cdot(x\\cdot e^x)=[(x^3)(e^x)-(3x^2)(e^x)+(6x)(e^x)-(6)(e^x)]+C"
"y\\cdot(x)=x^3-3x^2+6x-6+Ce^{-x}"
"y=x^2-3x+6-\\frac{6}{x}+\\frac{C}{x}e^{-x}"
Comments
Leave a comment