xdxdy+(x+1)y=x3 
dxdy+x(x+1)y=x2 
This is a linear differential equation of the first order
I.F=e∫xx+1dx=e∫x1+1dx=eln x+x 
Solution to the equation;
y⋅(I.F)=∫x2(I.F)dx+C 
yeln x+x=∫x2(eln x+x)dx+C 
y⋅eln x+x=∫x2⋅eln x⋅exdx+C=∫x3⋅exdx+C 
y⋅(x⋅ex)=[(x3)(ex)−(3x2)(ex)+(6x)(ex)−(6)(ex)]+C 
y⋅(x)=x3−3x2+6x−6+Ce−x 
y=x2−3x+6−x6+xCe−x 
                             
Comments