Solve the linear inhomogeneous differential equation using the constant variation method: y,-2y/x=I +1/x
Corresponding homogeneous differential equation
"\\dfrac{dy}{y}=2\\dfrac{dx}{x}"
Integrate
"y=Cx^2"
"y'=C'x^2+2xC"
"C'x^2+2xC-2\\dfrac{Cx^2}{x}=1+\\dfrac{1}{x}"
"C'=\\dfrac{1}{x^2}+\\dfrac{1}{x^3}"
Integrate
Substitute
Comments
Leave a comment