Question #271003

Solve the separable equation using linear substitution: y,=4/(x+y)2

1
Expert's answer
2021-11-29T11:37:21-0500

Let us solve the separable equation y=4(x+y)2y'=\frac{4}{(x+y)^2} using the linear substitution z=x+y.z=x+y. It follows that z=1+y,z'=1+y', and hence we get the equation z1=4z2.z'-1=\frac{4}{z^2}. The last equation is equivalent to dzdx=4z2+1,\frac{dz}{dx}=\frac{4}{z^2}+1, and hence to dx=z2dzz2+4.dx=\frac{z^2dz}{z^2+4}. It follows that

dx=z2dzz2+4=(z2+44)dzz2+4=dz4dzz2+4=z2arctanz2+C.\int dx=\int\frac{z^2dz}{z^2+4} =\int\frac{(z^2+4-4)dz}{z^2+4} =\int dz-4\int\frac{dz}{z^2+4}=z-2\arctan\frac{z}2+C.

Therefore, x=z2arctanz2+C.x=z-2\arctan\frac{z}2+C.

We conclude that the general solution of the differential equation y=4(x+y)2y'=\frac{4}{(x+y)^2} is

x=x+y2arctanx+y2+Cx=x+y-2\arctan\frac{x+y}2+C or y=2arctanx+y2+C.y=2\arctan\frac{x+y}2+C.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS