Answer to Question #267362 in Differential Equations for ron

Question #267362

Find fourier transform of

f(t)={ e^2it, -1<t<1

0,otherwise


1
Expert's answer
2021-11-18T09:24:19-0500

e2it=cos2t+isin2te^{2it}=cos2t+isin2t

f(t)=a0+n=1(ancos(nw0t)+bnsin(nw0t))f(t) = a_0 +∑_{n=1}^{\infin}(a_n cos (nw_0t)+b_n sin (nw_0t))


a0=1Tt0t0+Tf(t)dta_0=\frac{1}{T}\int^{t_0+T}_{t_0}f(t)dt


an=2Tt0t0+Tf(t)cos(nw0t)dta_n=\frac{2}{T}\int^{t_0+T}_{t_0}f(t)cos(nw_0t)dt


bn=2Tt0t0+Tf(t)sin(nw0t)dtb_n=\frac{2}{T}\int^{t_0+T}_{t_0}f(t)sin(nw_0t)dt


we have:

T=2,w0=2π/T=πT=2,w_0=2\pi/T=\pi


then:


a0=1211(cos2t+isin2t)dt=14(sin2ticos2t)11=a_0=\frac{1}{2}\int^{1}_{-1}(cos2t+isin2t)dt=\frac{1}{4}(sin2t-icos2t)|^1_{-1}=


=12sin2=\frac{1}{2}sin2


an=11(cos2t+isin2t)cos(nπt)dt=2πncos2sin(πn)4sin2cos(πn)π2n24=(1)n14sin2π2n24a_n=\int^{1}_{-1}(cos2t+isin2t)cos(n\pi t)dt=\frac{2\pi ncos2sin(\pi n)-4sin2cos(\pi n)}{\pi^2n^2-4}=\frac{(-1)^{n-1}4sin2}{\pi^2n^2-4}


bn=11(cos2t+isin2t)sin(nπt)dt=4cos2sin(πn)2πnsin2cos(πn)π2n24i=(1)n12sin2π2n24ib_n=\int^{1}_{-1}(cos2t+isin2t)sin(n\pi t)dt=\frac{4cos2sin(\pi n)-2\pi nsin2cos(\pi n)}{\pi^2n^2-4}i=\frac{(-1)^{n-1}2sin2}{\pi^2n^2-4}i


f(t)=12sin2+n=1((1)n14sin2π2n24cos(nπt)+i(1)n12sin2π2n24sin(nπt))f(t) = \frac{1}{2}sin2+∑_{n=1}^{\infin}(\frac{(-1)^{n-1}4sin2}{\pi^2n^2-4} cos (n\pi t)+i\frac{(-1)^{n-1}2sin2}{\pi^2n^2-4} sin (n\pi t))


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment