e2it=cos2t+isin2t
f(t)=a0+∑n=1∞(ancos(nw0t)+bnsin(nw0t))
a0=T1∫t0t0+Tf(t)dt
an=T2∫t0t0+Tf(t)cos(nw0t)dt
bn=T2∫t0t0+Tf(t)sin(nw0t)dt
we have:
T=2,w0=2π/T=π
then:
a0=21∫−11(cos2t+isin2t)dt=41(sin2t−icos2t)∣−11=
=21sin2
an=∫−11(cos2t+isin2t)cos(nπt)dt=π2n2−42πncos2sin(πn)−4sin2cos(πn)=π2n2−4(−1)n−14sin2
bn=∫−11(cos2t+isin2t)sin(nπt)dt=π2n2−44cos2sin(πn)−2πnsin2cos(πn)i=π2n2−4(−1)n−12sin2i
f(t)=21sin2+∑n=1∞(π2n2−4(−1)n−14sin2cos(nπt)+iπ2n2−4(−1)n−12sin2sin(nπt))
Comments
Leave a comment