Find fourier transform of
f(t)={ e^2it, -1<t<1
0,otherwise
"e^{2it}=cos2t+isin2t"
"f(t) = a_0 +\u2211_{n=1}^{\\infin}(a_n cos (nw_0t)+b_n sin (nw_0t))"
"a_0=\\frac{1}{T}\\int^{t_0+T}_{t_0}f(t)dt"
"a_n=\\frac{2}{T}\\int^{t_0+T}_{t_0}f(t)cos(nw_0t)dt"
"b_n=\\frac{2}{T}\\int^{t_0+T}_{t_0}f(t)sin(nw_0t)dt"
we have:
"T=2,w_0=2\\pi\/T=\\pi"
then:
"a_0=\\frac{1}{2}\\int^{1}_{-1}(cos2t+isin2t)dt=\\frac{1}{4}(sin2t-icos2t)|^1_{-1}="
"=\\frac{1}{2}sin2"
"a_n=\\int^{1}_{-1}(cos2t+isin2t)cos(n\\pi t)dt=\\frac{2\\pi ncos2sin(\\pi n)-4sin2cos(\\pi n)}{\\pi^2n^2-4}=\\frac{(-1)^{n-1}4sin2}{\\pi^2n^2-4}"
"b_n=\\int^{1}_{-1}(cos2t+isin2t)sin(n\\pi t)dt=\\frac{4cos2sin(\\pi n)-2\\pi nsin2cos(\\pi n)}{\\pi^2n^2-4}i=\\frac{(-1)^{n-1}2sin2}{\\pi^2n^2-4}i"
"f(t) = \\frac{1}{2}sin2+\u2211_{n=1}^{\\infin}(\\frac{(-1)^{n-1}4sin2}{\\pi^2n^2-4} cos (n\\pi t)+i\\frac{(-1)^{n-1}2sin2}{\\pi^2n^2-4} sin (n\\pi t))"
Comments
Leave a comment