Solve the given differential equation by using an appropriate substitution. The DE is a Bernoulli equation.
x dy/dx + y = 1/y^2
divide left and right sides of equation by "-(1-y^3)\/y^2" :
"\\frac{y^2}{y^3-1}dy=-\\frac{dx}{x}"
"\\int\\frac{y^2}{y^3-1}dy=-\\int\\frac{dx}{x}"
"\\frac{ln(y^3-1)}{3}=c-lnx"
"y=\\sqrt[3]{\\frac{c_1}{x^3}+1}"
Comments
Leave a comment