Solve [(D³+D²D¹-D(D¹)^2-(D¹)^3]z = e^xcos2y
Solution;
For the complementary solutions;
"m^3+m^2-m-1=0"
"m(m^2-1)+(m^2-1)=0"
"(m-1)(m^2-1)=0"
"(m+1)(m+1)(m-1)=0"
"m=-1,-1,1"
The complementary function we have;
"C.F=[x\\Phi_1(y-x)+\\Phi_2(y-x)]e^{-x}+\\Phi_3(y+x)e^x"
The particular Integral;
"P.I=\\frac{1}{f(D,D')}e^xcos2y"
"f(D,D')=D^3+D^2D'-D(D')^2-(D')^3"
From "e^xcos 2y" Coefficient of x is 1 and
that of y is 2;
"f(1,2)=1^3+(1^2\u00d72)-(1\u00d72^2)-(2)^3=-9"
Hence;
"P.I=-\\frac19e^xcos2y"
Hence the general solution of the equation is;
"z=[x\\Phi_1(y-x)+\\Phi_2(y-x)]e^{-x}+\\Phi_3(y+x)e^x-\\frac19e^xcos2y"
Comments
Leave a comment