Question #261928

Solve the initial value problem

y"-5y'+6y=2e^x, y(0)=1, y'(0)=1.


1
Expert's answer
2021-11-08T20:25:56-0500

Related homogeneous (complementary) equation


y5y+6y=0y''-5y'+6y=0

Characteristic (auxiliary) equation


r25r+6=0r^2-5r+6=0

(r2)(r3)=0(r-2)(r-3)=0

r1=2,r2=3r_1=2, r_2=3

The general solution of the homogeneous equation is


yh=c1e2x+c2e3xy_h=c_1e^{2x}+c_2e^{3x}

Find the particular solution of the nonhomogeneous differential equation


yp=Aexy_p=Ae^x

Then


yp=Aexy_p'=Ae^x

yp=Aexy_p''=Ae^x

Substitute


Aex5Aex+6Aex=2exAe^x-5Ae^x+6Ae^x=2e^x

A=1A=1

yp=exy_p=e^x

The general solution of the nonhomogeneous equation is


y=yh+ypy=y_h+y_p


y=c1e2x+c2e3x+exy=c_1e^{2x}+c_2e^{3x}+e^x


Initial conditions

y(0)=1:y(0)=1:


1=c1e2(0)+c2e3(0)+e0=>c1+c2=01=c_1e^{2(0)}+c_2e^{3(0)}+e^0=>c_1+c_2=0

y(0)=1y'(0)=1


y=2c1e2x+3c2e3x+exy'=2c_1e^{2x}+3c_2e^{3x}+e^x

1=2c1e2(0)+3c2e3(0)+e0=>2c1+3c2=01=2c_1e^{2(0)}+3c_2e^{3(0)}+e^0=>2c_1+3c_2=0


c2=c1c_2=-c_1

2c13c1=02c_1-3c_1=0

c1=0,c2=0c_1=0, c_2=0

The solution of the given initial value problem is


y=exy=e^x

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS