Related homogeneous (complementary) equation
y′′−5y′+6y=0 Characteristic (auxiliary) equation
r2−5r+6=0
(r−2)(r−3)=0
r1=2,r2=3 The general solution of the homogeneous equation is
yh=c1e2x+c2e3x Find the particular solution of the nonhomogeneous differential equation
yp=Aex Then
yp′=Aex
yp′′=Aex Substitute
Aex−5Aex+6Aex=2ex
A=1
yp=ex The general solution of the nonhomogeneous equation is
y=yh+yp
y=c1e2x+c2e3x+ex
Initial conditions
y(0)=1:
1=c1e2(0)+c2e3(0)+e0=>c1+c2=0
y′(0)=1
y′=2c1e2x+3c2e3x+ex
1=2c1e2(0)+3c2e3(0)+e0=>2c1+3c2=0
c2=−c1
2c1−3c1=0
c1=0,c2=0 The solution of the given initial value problem is
y=ex
Comments