Solve the differential equation by substitution suggested by equation. Show complete solution.
(5x+3e^y)dx + 2xe^y dy =0
We do substitution "u=e^y,du=e^ydy" and have
(5x+3u)dx+2xdu=0;
"2x\\frac{du}{dx}+5x+3u=0;\\\\\nu'(x)+\\frac{5}{2}+\\frac{3}{2}\\frac{u}{x}=0;\nt=\\frac{u}{x}- new \\space variable;\\\\\nu'(x)=t'(x)x+t;\\\\\nt'+\\frac{5}{2}+\\frac{5}{2}\\cdot t=0;\\\\"
"\\frac{2}{5}\\frac{dt}{t+1}=-dx;"
"\\frac{2}{5}\\int \\frac{dt}{t+1}=-\\int dx=-x+C;\\\\\nln|t+1|=C-\\frac{5}{2}x;\\\\\nt+1=\\pm e^C\\cdot e^{-\\frac{5}{2}x}=C\\cdot e^{-\\frac{5}{2}x},where \\space C:=\\pm e^C"
"t=-1+C\\cdot e^{-\\frac{5}{2}x};\\\\\n\\frac{u}{x}=-1+C\\cdot e^{-\\frac{5}{2}x};\\\\\nu=-x+C\\cdot x\\cdot e^{-\\frac{5}{2}x};\\\\" "C\\in R"
"y=ln(u)=ln \\left(x(C\\cdot e^{-\\frac{5}{2}x}-1) \\right)" - general solution
Comments
Leave a comment