Answer to Question #261387 in Differential Equations for Dionney

Question #261387

Solve the differential equation by substitution suggested by equation. Show complete solution.



(5x+3e^y)dx + 2xe^y dy =0

1
Expert's answer
2021-11-07T17:56:00-0500

We do substitution "u=e^y,du=e^ydy" and have

(5x+3u)dx+2xdu=0;

"2x\\frac{du}{dx}+5x+3u=0;\\\\\nu'(x)+\\frac{5}{2}+\\frac{3}{2}\\frac{u}{x}=0;\nt=\\frac{u}{x}- new \\space variable;\\\\\nu'(x)=t'(x)x+t;\\\\\nt'+\\frac{5}{2}+\\frac{5}{2}\\cdot t=0;\\\\"

"\\frac{2}{5}\\frac{dt}{t+1}=-dx;"

"\\frac{2}{5}\\int \\frac{dt}{t+1}=-\\int dx=-x+C;\\\\\nln|t+1|=C-\\frac{5}{2}x;\\\\\nt+1=\\pm e^C\\cdot e^{-\\frac{5}{2}x}=C\\cdot e^{-\\frac{5}{2}x},where \\space C:=\\pm e^C"

"t=-1+C\\cdot e^{-\\frac{5}{2}x};\\\\\n\\frac{u}{x}=-1+C\\cdot e^{-\\frac{5}{2}x};\\\\\nu=-x+C\\cdot x\\cdot e^{-\\frac{5}{2}x};\\\\" "C\\in R"

"y=ln(u)=ln \\left(x(C\\cdot e^{-\\frac{5}{2}x}-1) \\right)" - general solution


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog