a. Rewrite in the form of a first order Bernoulli ODE
d y d x + 1 x y = y − 2 \dfrac{dy}{dx}+\dfrac{1}{x}y=y^{-2} d x d y + x 1 y = y − 2 Substitution z = y 1 − ( − 2 ) = y 3 z=y^{1-(-2)}=y^3 z = y 1 − ( − 2 ) = y 3
d z d x = 3 y 2 d y d x \dfrac{dz}{dx}=3y^2\dfrac{dy}{dx} d x d z = 3 y 2 d x d y
y 2 d y d x + 1 x y 3 = 1 y^2\dfrac{dy}{dx}+\dfrac{1}{x}y^3=1 y 2 d x d y + x 1 y 3 = 1
1 3 d z d x + 1 x z = 1 \dfrac{1}{3}\dfrac{dz}{dx}+\dfrac{1}{x}z=1 3 1 d x d z + x 1 z = 1
d z d x + 3 x z = 3 \dfrac{dz}{dx}+\dfrac{3}{x}z=3 d x d z + x 3 z = 3 Integrating factor
μ ( x ) = e ∫ ( 3 / x ) d x = x 3 \mu(x)=e^{\int(3/x)dx}=x^3 μ ( x ) = e ∫ ( 3/ x ) d x = x 3
x 3 d z d x + 3 x 2 z = 3 x 3 x^3\dfrac{dz}{dx}+3x^2z=3x^3 x 3 d x d z + 3 x 2 z = 3 x 3
d ( x 3 z ) = 3 x 3 d x d(x^3z)=3x^3dx d ( x 3 z ) = 3 x 3 d x Integrate
∫ d ( x 3 z ) = ∫ 3 x 3 d x \int d(x^3z)=\int 3x^3dx ∫ d ( x 3 z ) = ∫ 3 x 3 d x
x 3 z = 3 4 x 4 + C x^3z=\dfrac{3}{4}x^4+C x 3 z = 4 3 x 4 + C
z = 3 4 x + C x 3 z=\dfrac{3}{4}x+\dfrac{C}{x^3} z = 4 3 x + x 3 C
y = 3 4 x + C x 3 3 y=\sqrt[3]{\dfrac{3}{4}x+\dfrac{C}{x^3}} y = 3 4 3 x + x 3 C
b. The equation is in the form of a first order Bernoulli ODE
d y d x + x y = x y 1 / 2 \dfrac{dy}{dx}+xy=xy^{1/2} d x d y + x y = x y 1/2 Substitution z = y 1 − ( 1 / 2 ) = y 1 / 2 z=y^{1-(1/2)}=y^{1/2} z = y 1 − ( 1/2 ) = y 1/2
d z d x = 1 2 y d y d x \dfrac{dz}{dx}=\dfrac{1}{2\sqrt{y}}\dfrac{dy}{dx} d x d z = 2 y 1 d x d y
1 2 y d y d x + 1 2 x y = 1 2 x \dfrac{1}{2\sqrt{y}}\dfrac{dy}{dx}+\dfrac{1}{2}x\sqrt{y}=\dfrac{1}{2}x 2 y 1 d x d y + 2 1 x y = 2 1 x
d z d x + 1 2 x z = 1 2 x \dfrac{dz}{dx}+\dfrac{1}{2}xz=\dfrac{1}{2}x d x d z + 2 1 x z = 2 1 x Integrating factor
μ ( x ) = e ∫ ( x / 2 ) d x = e x 2 / 4 \mu(x)=e^{\int(x/2)dx}=e^{x^2/4} μ ( x ) = e ∫ ( x /2 ) d x = e x 2 /4
e x 2 / 4 d z d x + 1 2 x e x 2 / 4 z = 1 2 x e x 2 / 4 e^{x^2/4}\dfrac{dz}{dx}+\dfrac{1}{2}xe^{x^2/4}z=\dfrac{1}{2}xe^{x^2/4} e x 2 /4 d x d z + 2 1 x e x 2 /4 z = 2 1 x e x 2 /4
d ( e x 2 / 4 z ) = 1 2 x e x 2 / 4 d x d(e^{x^2/4}z)=\dfrac{1}{2}xe^{x^2/4}dx d ( e x 2 /4 z ) = 2 1 x e x 2 /4 d x Integrate
∫ d ( e x 2 / 4 z ) = ∫ 1 2 x e x 2 / 4 d x \int d(e^{x^2/4}z)=\int \dfrac{1}{2}xe^{x^2/4}dx ∫ d ( e x 2 /4 z ) = ∫ 2 1 x e x 2 /4 d x
e x 2 / 4 z = e x 2 / 4 + C e^{x^2/4}z=e^{x^2/4}+C e x 2 /4 z = e x 2 /4 + C
z = 1 + C e − x 2 / 4 z=1+Ce^{-x^2/4} z = 1 + C e − x 2 /4
y = ( 1 + C e − x 2 / 4 ) 2 y=(1+Ce^{-x^2/4})^2 y = ( 1 + C e − x 2 /4 ) 2
Comments