Answer to Question #260747 in Differential Equations for christian

Question #260747

dy/dx + y/x =y-2


dy/dx +xy=x sqrt y



1
Expert's answer
2021-11-04T17:13:35-0400

a. Rewrite in the form of a first order Bernoulli ODE


"\\dfrac{dy}{dx}+\\dfrac{1}{x}y=y^{-2}"

Substitution "z=y^{1-(-2)}=y^3"


"\\dfrac{dz}{dx}=3y^2\\dfrac{dy}{dx}"

"y^2\\dfrac{dy}{dx}+\\dfrac{1}{x}y^3=1"

"\\dfrac{1}{3}\\dfrac{dz}{dx}+\\dfrac{1}{x}z=1"

"\\dfrac{dz}{dx}+\\dfrac{3}{x}z=3"

Integrating factor


"\\mu(x)=e^{\\int(3\/x)dx}=x^3"

"x^3\\dfrac{dz}{dx}+3x^2z=3x^3"

"d(x^3z)=3x^3dx"

Integrate


"\\int d(x^3z)=\\int 3x^3dx"

"x^3z=\\dfrac{3}{4}x^4+C"

"z=\\dfrac{3}{4}x+\\dfrac{C}{x^3}"

"y=\\sqrt[3]{\\dfrac{3}{4}x+\\dfrac{C}{x^3}}"


b. The equation is in the form of a first order Bernoulli ODE


"\\dfrac{dy}{dx}+xy=xy^{1\/2}"

Substitution "z=y^{1-(1\/2)}=y^{1\/2}"


"\\dfrac{dz}{dx}=\\dfrac{1}{2\\sqrt{y}}\\dfrac{dy}{dx}"

"\\dfrac{1}{2\\sqrt{y}}\\dfrac{dy}{dx}+\\dfrac{1}{2}x\\sqrt{y}=\\dfrac{1}{2}x"

"\\dfrac{dz}{dx}+\\dfrac{1}{2}xz=\\dfrac{1}{2}x"

Integrating factor


"\\mu(x)=e^{\\int(x\/2)dx}=e^{x^2\/4}"

"e^{x^2\/4}\\dfrac{dz}{dx}+\\dfrac{1}{2}xe^{x^2\/4}z=\\dfrac{1}{2}xe^{x^2\/4}"

"d(e^{x^2\/4}z)=\\dfrac{1}{2}xe^{x^2\/4}dx"

Integrate


"\\int d(e^{x^2\/4}z)=\\int \\dfrac{1}{2}xe^{x^2\/4}dx"

"e^{x^2\/4}z=e^{x^2\/4}+C"

"z=1+Ce^{-x^2\/4}"

"y=(1+Ce^{-x^2\/4})^2"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog