dy/dx + y/x =y-2
dy/dx +xy=x sqrt y
a. Rewrite in the form of a first order Bernoulli ODE
Substitution "z=y^{1-(-2)}=y^3"
"y^2\\dfrac{dy}{dx}+\\dfrac{1}{x}y^3=1"
"\\dfrac{1}{3}\\dfrac{dz}{dx}+\\dfrac{1}{x}z=1"
"\\dfrac{dz}{dx}+\\dfrac{3}{x}z=3"
Integrating factor
"x^3\\dfrac{dz}{dx}+3x^2z=3x^3"
"d(x^3z)=3x^3dx"
Integrate
"x^3z=\\dfrac{3}{4}x^4+C"
"z=\\dfrac{3}{4}x+\\dfrac{C}{x^3}"
"y=\\sqrt[3]{\\dfrac{3}{4}x+\\dfrac{C}{x^3}}"
b. The equation is in the form of a first order Bernoulli ODE
Substitution "z=y^{1-(1\/2)}=y^{1\/2}"
"\\dfrac{1}{2\\sqrt{y}}\\dfrac{dy}{dx}+\\dfrac{1}{2}x\\sqrt{y}=\\dfrac{1}{2}x"
"\\dfrac{dz}{dx}+\\dfrac{1}{2}xz=\\dfrac{1}{2}x"
Integrating factor
"e^{x^2\/4}\\dfrac{dz}{dx}+\\dfrac{1}{2}xe^{x^2\/4}z=\\dfrac{1}{2}xe^{x^2\/4}"
"d(e^{x^2\/4}z)=\\dfrac{1}{2}xe^{x^2\/4}dx"
Integrate
"e^{x^2\/4}z=e^{x^2\/4}+C"
"z=1+Ce^{-x^2\/4}"
"y=(1+Ce^{-x^2\/4})^2"
Comments
Leave a comment