The integrating factor for the Bernouli differential equation 2xyy' = y^2 - 2x^3 given initial condition y(1)=2
Rewrite in the form of a first order ODE
Substitute "z=y^{1-(-1)}=y^2"
"2yy'-\\dfrac{1}{x}y^2=-2x^2"
"z'-\\dfrac{1}{x}z=-2x^2"
Integrating factor
"IF=\\mu(x)=e^{\\int(-1\/x)dx}=\\dfrac{1}{x}""\\dfrac{1}{x}z'-\\dfrac{1}{x}(\\dfrac{1}{x})z=-2x^2(\\dfrac{1}{x})"
"d(\\dfrac{z}{x})=-2xdx"
Integrate
"\\dfrac{z}{x}=-x^2+C"
"z=-x^3+Cx"
"y^2=-x^3+Cx"
"y=\\pm\\sqrt{-x^3+Cx}"
Given initial condition "y(1)=2"
"C=9"
"y=\\sqrt{-x^3+9x}"
Comments
Leave a comment