Consider a 1kg mass suspended to a spring. A force of 20 Newtons is required to stretch it 5 meters below it’s natural length. (a) Determine the equation describing the motion of the system, if the system is released 1 meter below it’s natural position, with a push of 5 m/s upward, and damping is such that b = 2√ 8.Â
"mx''+bx'+kx=0"
 characteristic equation:
"m\\lambda^2+b\\lambda +k=0"
"\\lambda=\\frac{-b\\pm \\sqrt{b^2-4km}}{2m}"
"k=20\\ N\/5\\ m=4" N/m
"\\lambda=\\frac{-2\\sqrt 8\\pm \\sqrt{32-16}}{2m}"
"\\lambda=-\\sqrt 8\\pm 2"
"x(t)=c_1e^{\\lambda_1t}+c_2e^{\\lambda_2t}=c_1e^{(-\\sqrt 8- 2)t}+c_2e^{(-\\sqrt 8+ 2)t}"
"x(0)=c_1+c_2=1"
"v(t)=x'(t)=(-\\sqrt 8- 2)c_1e^{(-\\sqrt 8- 2)t}+(-\\sqrt 8+ 2)c_2e^{(-\\sqrt 8+ 2)t}"
"v(0)=(-\\sqrt 8- 2)c_1+(-\\sqrt 8+ 2)c_2=-5"
"(-\\sqrt 8- 2)(1-c_2)+(-\\sqrt 8+ 2)c_2=-5"
"-\\sqrt 8-2+4c_2=-5"
"c_2=(\\sqrt 8-3)\/4,c_1=1-(\\sqrt 8-3)\/4=(7-\\sqrt 8)\/4"
"x(t)=\\frac{7-\\sqrt 8}{4}e^{(-\\sqrt 8- 2)t}+\\frac{\\sqrt 8-3}{4}e^{(-\\sqrt 8+ 2)t}"
Comments
Leave a comment