Question #260053

 Consider a 1kg mass suspended to a spring. A force of 20 Newtons is required to stretch it 5 meters below it’s natural length. (a) Determine the equation describing the motion of the system, if the system is released 1 meter below it’s natural position, with a push of 5 m/s upward, and damping is such that b = 2√ 8. 


1
Expert's answer
2021-11-03T08:52:15-0400

mx+bx+kx=0mx''+bx'+kx=0

 characteristic equation:

mλ2+bλ+k=0m\lambda^2+b\lambda +k=0

λ=b±b24km2m\lambda=\frac{-b\pm \sqrt{b^2-4km}}{2m}

k=20 N/5 m=4k=20\ N/5\ m=4 N/m


λ=28±32162m\lambda=\frac{-2\sqrt 8\pm \sqrt{32-16}}{2m}

λ=8±2\lambda=-\sqrt 8\pm 2


x(t)=c1eλ1t+c2eλ2t=c1e(82)t+c2e(8+2)tx(t)=c_1e^{\lambda_1t}+c_2e^{\lambda_2t}=c_1e^{(-\sqrt 8- 2)t}+c_2e^{(-\sqrt 8+ 2)t}


x(0)=c1+c2=1x(0)=c_1+c_2=1


v(t)=x(t)=(82)c1e(82)t+(8+2)c2e(8+2)tv(t)=x'(t)=(-\sqrt 8- 2)c_1e^{(-\sqrt 8- 2)t}+(-\sqrt 8+ 2)c_2e^{(-\sqrt 8+ 2)t}

v(0)=(82)c1+(8+2)c2=5v(0)=(-\sqrt 8- 2)c_1+(-\sqrt 8+ 2)c_2=-5


(82)(1c2)+(8+2)c2=5(-\sqrt 8- 2)(1-c_2)+(-\sqrt 8+ 2)c_2=-5

82+4c2=5-\sqrt 8-2+4c_2=-5

c2=(83)/4,c1=1(83)/4=(78)/4c_2=(\sqrt 8-3)/4,c_1=1-(\sqrt 8-3)/4=(7-\sqrt 8)/4


x(t)=784e(82)t+834e(8+2)tx(t)=\frac{7-\sqrt 8}{4}e^{(-\sqrt 8- 2)t}+\frac{\sqrt 8-3}{4}e^{(-\sqrt 8+ 2)t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS