Find the integral surface of the linear differential equation (x-y)y^2p+(y-x)x^2=(x^2+y^2)z, which passes through the curve xz=a^3,y=0
"(x-y)y^2p+(y-x)x^2q=(x^2+y^2)z"
"\\frac{dx}{(x-y)y^2}=\\frac{dy}{(y-x)x^2}=\\frac{dz}{(x^2+y^2)z}"
"x^2dx+y^2dy=0"
"x^3+y^3=c_1"
"\\frac{dx-dy}{(x-y)(x^2+y^2)}=\\frac{dz}{(x^2+y^2)z}"
"ln(x-y)=lnz+lnc_2"
"\\frac{x-y}{z}=c_2"
"F(c_1,c_2)=F(x^3+y^3,\\frac{x-y}{z})=0"
for  the curve "xz=a^3,y=0" :
"c_1=x^3"
"x\/z=c_2"
"\\implies z=x\/c_2=\\sqrt[3]{c_1}\/c_2"
"x\/c_2=a^3\/x\\implies x^2=c_2a^3"
"z=\\frac{z\\sqrt[3]{x^3+y^3}}{x-y}"
"\\sqrt[3]{x^3+y^3}=x-y"
"z=a^3\/x=a^3\/\\sqrt[3]{c_1}=\\frac{a^3}{\\sqrt[3]{x^3+y^3}}"
Comments
Leave a comment