Answer to Question #259555 in Differential Equations for josh

Question #259555

xydx(2x^2+3y^2-20)dy=0


1
Expert's answer
2021-11-01T19:59:48-0400

xydx+(2x2+3y220)dy=0xydx+(2x^2+3y^2-20)dy=0


integrating factor:

μ(y)=y3\mu (y)=y^3

xy4dx+(2x2+3y220)y3dy=0xy^4dx+(2x^2+3y^2-20)y^3dy=0


f(x,y)=y4xdx=y4x2/2+g(y)f(x,y)=\int y^4xdx=y^4x^2/2+g(y)


(y4x2/2+g(y))y=2y3x2+dg(y)/dy(y^4x^2/2+g(y))_y=2y^3x^2+dg(y)/dy


2y3x2+dg(y)/dy=(2x2+3y220)y32y^3x^2+dg(y)/dy=(2x^2+3y^2-20)y^3


dg(y)/dy=(3y220)y3dg(y)/dy=(3y^2-20)y^3


g(y)=(3y220)y3dy=y6/25y4g(y)=\int(3y^2-20)y^3dy=y^6/2-5y^4


f(x,y)=y6/25y4+y4x2/2f(x,y)=y^6/2-5y^4+y^4x^2/2


f(x,y)=c1f(x,y)=c_1


y6/25y4+y4x2/2=c1y^6/2-5y^4+y^4x^2/2=c_1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment