xydx+(2x2+3y2−20)dy=0
integrating factor:
μ(y)=y3
xy4dx+(2x2+3y2−20)y3dy=0
f(x,y)=∫y4xdx=y4x2/2+g(y)
(y4x2/2+g(y))y=2y3x2+dg(y)/dy
2y3x2+dg(y)/dy=(2x2+3y2−20)y3
dg(y)/dy=(3y2−20)y3
g(y)=∫(3y2−20)y3dy=y6/2−5y4
f(x,y)=y6/2−5y4+y4x2/2
f(x,y)=c1
y6/2−5y4+y4x2/2=c1
Comments
Leave a comment