Solve the differential equation by substitution suggested by equation. Show complete solution.
(5x+3e^y)dx+2xe^y dy =0
"(5x+3e^y)dx+2xe^y dy =0\\\\\n2xe^y dy=-((5x+3e^y)dx)\\\\\ne^y \\frac{dy}{dx}=-(\\frac{5x+3e^y}{2x})"
Let us substitute "e^y=z\\Rightarrow e^y \\frac{dy}{dx}=\\frac{dz}{dx}\\\\"
Then, "\\frac{dz}{dx}=-(\\frac{5x+3e^y}{2x})"
"\\Rightarrow \\frac{d z}{d x}=-\\frac{5}{2}-\\frac{3}{2 x} \\cdot z \\\\\n\\Rightarrow \\frac{d z}{d x}+\\frac{3}{2 x} \\cdot z=-\\frac{5}{2}"
"I \\cdot F=e^{\\int \\frac{3}{2 x} d x}=e^{\\frac{3}{2} \\cdot \\ln x}=e^{\\ln x^{3 \/ 2}}=x^{3 \/ 2}"
Multiplying above differential equation by I . F, and integrating,
"\\Rightarrow z \\cdot x^{3 \/ 2}=\\int -\\frac{5}{2}.x^\\frac{3}{2}dx+c\\\\ \n\\Rightarrow z \\cdot x^{3 \/ 2}=-\\frac{5}{2} \\cdot \\frac{x^{\\frac{3}{2}+1}}{\\frac{3}{2}+1}+c \\\\\n\\Rightarrow z \\cdot x^{3 \/ 2}=-\\frac{5}{2} \\cdot \\frac{2}{5} \\cdot x^{\\frac{5}{2}}+c\\\\\n\\Rightarrow e^{y} \\cdot x^{3 \/ 2}=-x^{\\frac{5}{2}}+c\\left[\\because z=e^{y}\\right]\\\\"
"\\Rightarrow e^{y}=-x^{\\frac{5}{2}-\\frac{3}{2}}+c. x^{-3 \/ 2}\\\\\n\\Rightarrow e^{y}=-x+c x^{-\\frac{3}{2}}\\\\\n\\Rightarrow e^{y}=c x^{-\\frac{3}{2}}-x\\\\\n\\Rightarrow y=ln|c x^{-\\frac{3}{2}}-x|"
Comments
Leave a comment