(5x+3ey)dx+2xeydy=02xeydy=−((5x+3ey)dx)eydxdy=−(2x5x+3ey)
Let us substitute ey=z⇒eydxdy=dxdz  
Then, dxdz=−(2x5x+3ey) 
⇒dxdz=−25−2x3⋅z⇒dxdz+2x3⋅z=−25 
I⋅F=e∫2x3dx=e23⋅lnx=elnx3/2=x3/2 
Multiplying above differential equation by I . F, and integrating,
⇒z⋅x3/2=∫−25.x23dx+c⇒z⋅x3/2=−25⋅23+1x23+1+c⇒z⋅x3/2=−25⋅52⋅x25+c⇒ey⋅x3/2=−x25+c[∵z=ey] 
⇒ey=−x25−23+c.x−3/2⇒ey=−x+cx−23⇒ey=cx−23−x⇒y=ln∣cx−23−x∣ 
Comments