Answer to Question #262005 in Differential Equations for anje

Question #262005

Obtain the particular solution


1. dy/dx+2y=y^3e^4x, y(0)=1. ans. y^2 (1-2x)=e^-4x



2.dy/dx - y/x=y^5/x^3 ,y(1)=-1. ans. y^4(3-2x^2)=x^4

1
Expert's answer
2021-11-09T15:16:11-0500

1.


z=y13=y2z=y^{1-3}=y^{-2}

dzdx=2y3dydx\dfrac{dz}{dx}=-2y^{-3}\dfrac{dy}{dx}

2y3dydx2y3(2y)=2y3y3e4x-2y^{-3}\dfrac{dy}{dx}-2y^{-3}(2y)=-2y^{-3}y^3e^{4x}

dzdx4z=2e4x\dfrac{dz}{dx}-4z=-2e^{4x}

Integration factor


μ(x)=e4x\mu(x)=e^{-4x}

e4xdzdx4e4xz=2e4xe4xe^{-4x}\dfrac{dz}{dx}-4e^{-4x}z=-2e^{-4x}e^{4x}

d(e4xz)=2dxd(e^{-4x}z)=-2dx

Integrate


d(e4xz)=2dx\int d(e^{-4x}z)=-\int2dx

e4xz=2x+Ce^{-4x}z=-2x+C

y2=2xe4x+Ce4xy^{-2}=-2xe^{4x}+Ce^{4x}

y2=12xe4x+Ce4xy^2=\dfrac{1}{-2xe^{4x}+Ce^{4x}}

y(0)=1y(0)=1


12=12(0)e4(0)+Ce4(0)=>C=11^2=\dfrac{1}{-2(0)e^{4(0)}+Ce^{4(0)}}=>C=1

y2(12x)e4x=1y^2(1-2x)e^{4x}=1

y2(12x)=e4xy^2(1-2x)=e^{-4x}

2.


z=y15=y4z=y^{1-5}=y^{-4}

dzdx=4y5dydx\dfrac{dz}{dx}=-4y^{-5}\dfrac{dy}{dx}

4y5dydx+4y5(yx)=4y5y5x3-4y^{-5}\dfrac{dy}{dx}+4y^{-5}(\dfrac{y}{x})=-4y^{-5}\dfrac{y^5}{x^3}

dzdx+4zx=4x3\dfrac{dz}{dx}+4\dfrac{z}{x}=-\dfrac{4}{x^3}

Integration factor


μ(x)=e(4/x)dx=x4\mu(x)=e^{\int(4/x)dx}=x^{4}

x4dzdx4x4zx=x44x3x^{4}\dfrac{dz}{dx}-4x^{4}\dfrac{z}{x}=-x^{4}\dfrac{4}{x^3}

d(x4z)=4xdxd(x^{4}z)=-4xdx

Integrate


d(x4z)=4xdx\int d(x^{4}z)=-\int4xdx

x4z=2x2+Cx^{4}z=-2x^2+C

z=2x2+Cx4z=-2x^{-2}+Cx^{-4}

y4=2x2+Cx4y^{-4}=-2x^{-2}+Cx^{-4}

y(1)=1y(1)=-1


(1)4=2(1)2+C(1)4=>C=3(-1)^{-4}=-2(1)^{-2}+C(1)^{-4}=>C=3

y4=2x2+3x4y^{-4}=-2x^{-2}+3x^{-4}

y4(32x2)=x4y^4(3-2x^2)=x^4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment