Obtain the particular solution
1. dy/dx+2y=y^3e^4x, y(0)=1. ans. y^2 (1-2x)=e^-4x
2.dy/dx - y/x=y^5/x^3 ,y(1)=-1. ans. y^4(3-2x^2)=x^4
1.
"\\dfrac{dz}{dx}=-2y^{-3}\\dfrac{dy}{dx}"
"-2y^{-3}\\dfrac{dy}{dx}-2y^{-3}(2y)=-2y^{-3}y^3e^{4x}"
"\\dfrac{dz}{dx}-4z=-2e^{4x}"
Integration factor
"e^{-4x}\\dfrac{dz}{dx}-4e^{-4x}z=-2e^{-4x}e^{4x}"
"d(e^{-4x}z)=-2dx"
Integrate
"e^{-4x}z=-2x+C"
"y^{-2}=-2xe^{4x}+Ce^{4x}"
"y^2=\\dfrac{1}{-2xe^{4x}+Ce^{4x}}"
"y(0)=1"
"y^2(1-2x)e^{4x}=1"
"y^2(1-2x)=e^{-4x}"
2.
"\\dfrac{dz}{dx}=-4y^{-5}\\dfrac{dy}{dx}"
"-4y^{-5}\\dfrac{dy}{dx}+4y^{-5}(\\dfrac{y}{x})=-4y^{-5}\\dfrac{y^5}{x^3}"
"\\dfrac{dz}{dx}+4\\dfrac{z}{x}=-\\dfrac{4}{x^3}"
Integration factor
"x^{4}\\dfrac{dz}{dx}-4x^{4}\\dfrac{z}{x}=-x^{4}\\dfrac{4}{x^3}"
"d(x^{4}z)=-4xdx"
Integrate
"x^{4}z=-2x^2+C"
"z=-2x^{-2}+Cx^{-4}"
"y^{-4}=-2x^{-2}+Cx^{-4}"
"y(1)=-1"
"y^{-4}=-2x^{-2}+3x^{-4}"
"y^4(3-2x^2)=x^4"
Comments
Leave a comment