Use linear substitution to solve the following first-order differential equation
ππ¦/ππ₯=(2π₯+π¦)/(2π₯+π¦+1)
"\\dfrac{du}{dx}=2+\\dfrac{dy}{dx}"
Substitute
"\\dfrac{du}{dx}=\\dfrac{3u+2}{u+1}"
"\\dfrac{u+1}{3u+2}du=dx"
Integrate
"\\int\\dfrac{u+1}{3u+2}du=\\dfrac{1}{3}\\int\\dfrac{3u+2}{3u+2}du+\\dfrac{1}{3}\\int\\dfrac{1}{3u+2}du"
"=\\dfrac{1}{3}u+\\dfrac{1}{9}\\ln|(3u+2)|+C_1"
"\\dfrac{1}{3}u+\\dfrac{1}{9}\\ln|(3u+2)|=x+\\dfrac{1}{9}\\ln C"
"3u+\\ln|(3u+2)|=9x+\\ln C"
"(3u+2)e^{3u}=Ce^{9x}"
Then
"(6x+3y+2)e^{2y}=Ce^{3x}"
Comments
Leave a comment