Answer to Question #262855 in Differential Equations for harry

Question #262855

solve 8y''-2y'-y=x2+x+1


1
Expert's answer
2021-11-09T13:00:27-0500

Homogeneous differential equation is 8y"-2y'-y=0. -------(1)

Auxiliary equation,

8m2-2m-1=0

m=12,14\frac{1}{2},\frac{-1}{4}

Therefore, solution of (1),

y(x)=c1e12x+c2e14xc_1e^{\frac{1}{2}x}+c_2e^{\frac{-1}{4}x}


Now, finding the particular solution of the given differential equation.

yp=18D22D1(x2+x+1)=(1)[1+(2D8D2)]1(x2+x+1)=(1)[1(2D8D2)+(2D8D2)2(2D8D2)3...](x2+x+1)Eliminate higher degree terms=(1)[1(2D8D2)+(2D8D2)2](x2+x+1)=(1)[x2+x+1(2x+1)+24]=x2+3x23Therefore, general solution is y(x)=c1e12x+c2e14xx2+3x23y_p=\frac{1}{8D^2-2D-1}(x^2+x+1)\\ =(-1)[1+(2D-8D^2)]^{-1}(x^2+x+1)\\ =(-1)[1-(2D-8D^2)+(2D-8D^2)^2-(2D-8D^2)^3-...](x^2+x+1)\\\text{Eliminate higher degree terms}\\ =(-1)[1-(2D-8D^2)+(2D-8D^2)^2](x^2+x+1)\\ =(-1)[x^2+x+1-(2x+1)+24]\\ =-x^2+3x-23\\ \text{Therefore, general solution is }\\ y(x)=c_1e^{\frac{1}{2}x}+c_2e^{\frac{-1}{4}x}-x^2+3x-23


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment