d^y/dx^-4y=xsinhx
Solution;
"\\frac{d^2y}{dx^2}-4y=xsinhx"
For the complementary solution:
The characteristic polynomial is;
"m^2-4=0"
"m^2=4"
"m=\\displaystyle _-^+2"
Hence the homogeneous solution is;
"y_h=c_1e^{2x}+c_2e^{-2x}"
For the particular Integral;
"P.I=\\frac{1}{D^2-4}xsinhx"
"=\\frac{1}{(D+2)(D-2)}x\\frac{e^x-e^{-x}}{2}"
"=\\frac{e^x}{2(D+2)(D-2)}x-\\frac{e^{-x}}{2(D+2)(D-2)}"
"=\\frac{e^x}{2(D+1+2)(D+1-2)}x-\\frac{e^{-x}}{2(D-1+2)(D-1-2)}x"
"=\\frac{e^x}{2(D^2+2D-3)}x-\\frac{e^{-x}}{2(D^2-2D-3)}x"
"=\\frac{e^x}{2}[\\frac{1}{-3(1-\\frac{D^2+2D}{3})}]x-\\frac{e^{-x}}{2}[\\frac{1}{-3(1-\\frac{(2D-D^2)}{3})}]x"
"=\\frac{e^x}{-6}[1+\\frac{D^2+2D}{3}+...]x+\\frac{e^{-x}}{6}[1-\\frac{2D-D^2}{3}+...]x"
"=\\frac{-e^x}{6}[x+\\frac23]+\\frac{e^{-x}}{6}[x+\\frac23]"
"=\\frac{-x}{3}(\\frac{e^x-e^{-x}}{2})-\\frac29(\\frac{e^x-e^{-x}}{2})"
Hence;
"P.I=\\frac{-x}{3}sinhx-\\frac29sinhx" ="-\\frac19(3x+2)sinhx"
Complete solution is ;
"y=C.F+P.I"
"y=c_1e^{2x}+c_2e^{-2x}-\\frac 19(3x+2)sinhx"
Comments
Leave a comment