Solution;
dx2d2y−4y=xsinhx
For the complementary solution:
The characteristic polynomial is;
m2−4=0
m2=4
m=−+2
Hence the homogeneous solution is;
yh=c1e2x+c2e−2x
For the particular Integral;
P.I=D2−41xsinhx
=(D+2)(D−2)1x2ex−e−x
=2(D+2)(D−2)exx−2(D+2)(D−2)e−x
=2(D+1+2)(D+1−2)exx−2(D−1+2)(D−1−2)e−xx
=2(D2+2D−3)exx−2(D2−2D−3)e−xx
=2ex[−3(1−3D2+2D)1]x−2e−x[−3(1−3(2D−D2))1]x
=−6ex[1+3D2+2D+...]x+6e−x[1−32D−D2+...]x
=6−ex[x+32]+6e−x[x+32]
=3−x(2ex−e−x)−92(2ex−e−x)
Hence;
P.I=3−xsinhx−92sinhx =−91(3x+2)sinhx
Complete solution is ;
y=C.F+P.I
y=c1e2x+c2e−2x−91(3x+2)sinhx
Comments