Question #262897

d^y/dx^-4y=xsinhx

1
Expert's answer
2021-11-19T00:36:21-0500

Solution;

d2ydx24y=xsinhx\frac{d^2y}{dx^2}-4y=xsinhx

For the complementary solution:

The characteristic polynomial is;

m24=0m^2-4=0

m2=4m^2=4

m=+2m=\displaystyle _-^+2

Hence the homogeneous solution is;

yh=c1e2x+c2e2xy_h=c_1e^{2x}+c_2e^{-2x}

For the particular Integral;

P.I=1D24xsinhxP.I=\frac{1}{D^2-4}xsinhx

=1(D+2)(D2)xexex2=\frac{1}{(D+2)(D-2)}x\frac{e^x-e^{-x}}{2}

=ex2(D+2)(D2)xex2(D+2)(D2)=\frac{e^x}{2(D+2)(D-2)}x-\frac{e^{-x}}{2(D+2)(D-2)}

=ex2(D+1+2)(D+12)xex2(D1+2)(D12)x=\frac{e^x}{2(D+1+2)(D+1-2)}x-\frac{e^{-x}}{2(D-1+2)(D-1-2)}x

=ex2(D2+2D3)xex2(D22D3)x=\frac{e^x}{2(D^2+2D-3)}x-\frac{e^{-x}}{2(D^2-2D-3)}x

=ex2[13(1D2+2D3)]xex2[13(1(2DD2)3)]x=\frac{e^x}{2}[\frac{1}{-3(1-\frac{D^2+2D}{3})}]x-\frac{e^{-x}}{2}[\frac{1}{-3(1-\frac{(2D-D^2)}{3})}]x

=ex6[1+D2+2D3+...]x+ex6[12DD23+...]x=\frac{e^x}{-6}[1+\frac{D^2+2D}{3}+...]x+\frac{e^{-x}}{6}[1-\frac{2D-D^2}{3}+...]x

=ex6[x+23]+ex6[x+23]=\frac{-e^x}{6}[x+\frac23]+\frac{e^{-x}}{6}[x+\frac23]

=x3(exex2)29(exex2)=\frac{-x}{3}(\frac{e^x-e^{-x}}{2})-\frac29(\frac{e^x-e^{-x}}{2})

Hence;

P.I=x3sinhx29sinhxP.I=\frac{-x}{3}sinhx-\frac29sinhx =19(3x+2)sinhx-\frac19(3x+2)sinhx

Complete solution is ;

y=C.F+P.Iy=C.F+P.I

y=c1e2x+c2e2x19(3x+2)sinhxy=c_1e^{2x}+c_2e^{-2x}-\frac 19(3x+2)sinhx




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS