Answer to Question #262897 in Differential Equations for Anu

Question #262897

d^y/dx^-4y=xsinhx

1
Expert's answer
2021-11-19T00:36:21-0500

Solution;

"\\frac{d^2y}{dx^2}-4y=xsinhx"

For the complementary solution:

The characteristic polynomial is;

"m^2-4=0"

"m^2=4"

"m=\\displaystyle _-^+2"

Hence the homogeneous solution is;

"y_h=c_1e^{2x}+c_2e^{-2x}"

For the particular Integral;

"P.I=\\frac{1}{D^2-4}xsinhx"

"=\\frac{1}{(D+2)(D-2)}x\\frac{e^x-e^{-x}}{2}"

"=\\frac{e^x}{2(D+2)(D-2)}x-\\frac{e^{-x}}{2(D+2)(D-2)}"

"=\\frac{e^x}{2(D+1+2)(D+1-2)}x-\\frac{e^{-x}}{2(D-1+2)(D-1-2)}x"

"=\\frac{e^x}{2(D^2+2D-3)}x-\\frac{e^{-x}}{2(D^2-2D-3)}x"

"=\\frac{e^x}{2}[\\frac{1}{-3(1-\\frac{D^2+2D}{3})}]x-\\frac{e^{-x}}{2}[\\frac{1}{-3(1-\\frac{(2D-D^2)}{3})}]x"

"=\\frac{e^x}{-6}[1+\\frac{D^2+2D}{3}+...]x+\\frac{e^{-x}}{6}[1-\\frac{2D-D^2}{3}+...]x"

"=\\frac{-e^x}{6}[x+\\frac23]+\\frac{e^{-x}}{6}[x+\\frac23]"

"=\\frac{-x}{3}(\\frac{e^x-e^{-x}}{2})-\\frac29(\\frac{e^x-e^{-x}}{2})"

Hence;

"P.I=\\frac{-x}{3}sinhx-\\frac29sinhx" ="-\\frac19(3x+2)sinhx"

Complete solution is ;

"y=C.F+P.I"

"y=c_1e^{2x}+c_2e^{-2x}-\\frac 19(3x+2)sinhx"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog