The population in a town satisfies the logistic law.
dx/dt=x/100-x2/108
where t is the number of years after the 2019 population census. if the population x was 100,000 in 2019.determine
"\\int\\dfrac{10^8dx}{10^6x-x^2}=\\int dt"
"\\int\\dfrac{100dx}{x}+\\int\\dfrac{100dx}{10^6-x}=\\int dt"
"100\\ln|x|-100\\ln|x-10^6|=t+100\\ln C"
"\\ln\\dfrac{x}{|x-10^6|}=0.01t+\\ln C"
"\\dfrac{x}{|x-10^6|}=Ce^{0.01t}"
"x(0)=100000"
"C=\\dfrac{1}{9}"
"\\dfrac{x}{|x-10^6|}=\\dfrac{1}{9}e^{0.01t}"
1. If "x<1000000"
"x(t)=\\dfrac{10^6}{1+9e^{-0.01t}}"
2,
"x=2(100000)=2\\times10^5"
"18=8e^{0.01t}"
"0.01t=\\ln 2.25"
"t=100\\ln2.25\\ years"
"t=81.1\\ years"
Comments
Leave a comment