Question #216527

solve the following differential equation

  1. dx+(1-x2)dy=0
  2. 8cos2ydx+cosec2xdy=0

The annual sells of a new company are expected to grow at a rate proportional to the difference between the sells and the upper limit of 20 million pounds . If the sells are 0 initially and 4million pounds after the 2nd year of operations. Determine if the companies sells during the 10th year and the year when the company sells will be 15million pounds.



1
Expert's answer
2021-07-13T09:54:48-0400

1.


dx+(1x2)dy=0dx+(1-x^2)dy=0

dy=dxx21dy=\dfrac{dx}{x^2-1}

y=dxx21y=\int \dfrac{dx}{x^2-1}

y=12dxx112dxx+1y=\dfrac{1}{2}\int \dfrac{dx}{x-1}-\dfrac{1}{2}\int \dfrac{dx}{x+1}

y=12lnx112lnx+1+Cy=\dfrac{1}{2}\ln |x-1|-\dfrac{1}{2}\ln|x+1|+C

2.


8cos2(y)dx+cosec2(x)dy=08\cos^2(y)dx+\cosec^2(x)dy=0

dycos2(y)=8sin2(x)dx\dfrac{dy}{\cos^2(y)}=-8\sin^2(x)dx

dycos2(y)=8sin2(x)dx\int\dfrac{dy}{\cos^2(y)}=-\int8\sin^2(x)dx

dycos2(y)=4(1cos(2x))dx\int\dfrac{dy}{\cos^2(y)}=-4\int(1-\cos(2x))dx


tan(y)=4x+2sin(2x)+C\tan(y)=-4x+2\sin(2x)+C

3.


dydt=k(y20)\dfrac{dy}{dt}=k(y-20)dyy20=kdt\dfrac{dy}{y-20}=kdt

dyy20=kdt\int\dfrac{dy}{y-20}=\int kdt

ln(y20)=kt+lnC\ln(y-20)=kt+\ln C

y=20+Cekty=20+Ce^{kt}

y(0)=0:0=20+Cek(0)=>C=20y(0)=0:0=20+Ce^{k(0)}=>C=-20

y=2020ekty=20-20e^{kt}

y(2)=4:4=2020ek(2)=>e2k=0.8y(2)=4:4=20-20e^{k(2)}=>e^{2k}=0.8

=>k=0.5ln0.8=>k=0.5\ln0.8

y(t)=2020e(0.5ln0.8)ty(t)=20-20e^{(0.5\ln0.8)t}

y(10)=2020e(0.5ln0.8)10y(10)=20-20e^{(0.5\ln0.8)\cdot10}

=13.4464 million pounds =13.4464\text{ million pounds }



y(t1)=15:15=2020e(0.5ln0.8)t1y(t_1)=15:15=20-20e^{(0.5\ln0.8)t_1}

e(0.5ln0.8)t1=0.25e^{(0.5\ln0.8)t_1}=0.25

(0.5ln0.8)t1=ln0.25(0.5\ln0.8)t_1=\ln0.25

t1=2(ln0.25ln0.8)t_1=2(\dfrac{\ln0.25}{\ln0.8})

t112.425 yearst_1\approx12.425\ years




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS