Answer to Question #216345 in Differential Equations for Kristoff

Question #216345
(2y^3-x^3)dx+3x^2ydy=0
1
Expert's answer
2021-07-12T18:27:30-0400
"(2y^3-x^3)dx+3x^2ydy=0"

"3\\dfrac{y}{x}\\cdot\\dfrac{dy}{dx}+2\\dfrac{y^3}{x^3}-1=0"


Let "y=xv"


"\\dfrac{dy}{dx}=v+x\\dfrac{dv}{dx}"

"3v(v+x\\dfrac{dv}{dx})+2v^3-1=0"

"3xv\\dfrac{dv}{dx}=-2v^3-3v^2+1"

"\\dfrac{3vdv}{-2v^3-3v^2+1}=\\dfrac{dx}{x}"

"2v^3+3v^2-1=(v+1)^2(2v-1)"

"\\dfrac{-3v}{2v^3+3v^2-1}=\\dfrac{A}{2v-1}+\\dfrac{B}{v+1}+\\dfrac{C}{(v+1)^2}"

"A(v+1)^2+B(2v-1)(v+1)+C(2v-1)=-3v"

"v=\\dfrac{1}{2}:\\dfrac{9}{4}A=-\\dfrac{3}{2}=>A=-\\dfrac{2}{3}"

"v=-1: -3C=3=>C=-1"

"v=0:A-B-C=0=>B=A-C=\\dfrac{1}{3}"

"-\\dfrac{2}{3}\\int\\dfrac{dv}{2v-1}+\\dfrac{1}{3}\\int\\dfrac{dv}{v+1}-\\int\\dfrac{dv}{(v+1)^2}"

"=\\int\\dfrac{dx}{x}"

"-\\dfrac{1}{3}\\ln|2v-1|+\\dfrac{1}{3}\\ln|v+1|+(\\dfrac{1}{v+1})"

"=\\ln|x|+\\ln C"

"\\dfrac{1}{3}\\ln\\dfrac{v+1}{2v-1}+\\dfrac{1}{v+1}=\\ln(Cx)"

"\\dfrac{1}{3}\\ln\\dfrac{y+x}{2y-x}+\\dfrac{x}{y+x}=\\ln(Cx)"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog