Answer to Question #216104 in Differential Equations for Karylle

Question #216104
(2y^3-x^3)dx+3x^2ydy=0
1
Expert's answer
2021-07-12T13:24:23-0400

Given "(2y^3-x^3)dx+3x^2ydy=0"

"\\frac{dy}{dx} = -\\frac{(2y^3-x^3)}{3x^2y} = \\frac{(x^3-2y^3)}{3x^2y}"


Let y = vx, then "\\frac{dy}{dx } = v+x\\frac{dv}{dx}"


"v+x\\frac{dv}{dx} = \\frac{(x^3-2v^3x^3)}{3x^3v} = \\frac{1-2v^3}{3v}"


"x\\frac{dv}{dx} = \\frac{1-2v^3}{3v}-v = \\frac{1-2v^3-3v^2}{3v}"


"\\frac{3vdv}{1-2v^3-3v^2} = \\frac{dx}{x}"



Integrating both sides,

"\\int \\frac{3vdv}{1-2v^3-3v^2} =\\int \\frac{dx}{x}"


Doing partial fractions,

"\\frac{3v}{1-2v^3-3v^2} = \\frac{1}{9(v+1)} -\\frac{1}{3(v+1)^2}-\\frac{2}{9(2v-1)}"


Now integrate both sides,

"\\int \\frac{1}{9(v+1)} -\\frac{1}{3(v+1)^2}-\\frac{2}{9(2v-1)} dv =\\int\\frac{dx}{x}"


"\\frac{1}{3}ln|v+1| +\\frac{1}{v+1} -\\frac{1}{3}ln|2v-1| = ln|x| + ln|C|"


"\\frac{1}{3}ln|\\frac{v+1}{2v-1}| +\\frac{1}{v+1} = ln|Cx|"


Simply putting "v = \\frac{y}{x}"


"\\frac{1}{3}ln|\\frac{y+x}{2y-x}| +\\frac{x}{y+x} = ln|Cx|"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog